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Finite Amplitude Azimuthal Shear
Waves in a Compressible
Hyperelastic Solid
Lagrangian equations of motion for finite amplitude azimuthal shear wave propagatio
a compressible isotropic hyperelastic solid are obtained in conservation form wi
source term. A Godunov-type finite difference procedure is used along with these
tions to obtain numerical solutions for wave propagation emanating from a cylindr
cavity, of fixed radius, whose surface is subjected to the sudden application of a spa
uniform azimuthal shearing stress. Results are presented for waves propagating ra
outwards; however, the numerical procedure can also be used to obtain solutions if w
are reflected radially inwards from a cylindrical outer surface of the medium. A clas
strain energy functions is considered, which is a compressible generalization o
Mooney-Rivlin strain energy function, and it is shown that, for this class, an azimu
shear wave can not propagate without a coupled longitudinal wave. This is in contra
the problem of finite amplitude plane shear wave propagation with the neo-Hoo
generalization, for which a shear wave can propagate without a coupled longitud
wave. The plane problem is discussed briefly for comparison with the azimuthal pro
@DOI: 10.1115/1.1334862#
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1 Introduction
Static azimuthal shear of a compressible hyperelastic solid

been considered by various authors and recently Polignone
Horgan @1#, Beatty and Jiang@2# and Jiang and Ogden@3# have
obtained conditions that compressible strain energy functi
must satisfy so that pure azimuthal strain is possible. A rela
dynamic problem of small azimuthal oscillations superimposed
a finite static pure azimuthal shear of a particular compress
hyperelastic solid has been considered by Vandyke and Wine
@4#, who found that the small oscillations induce radial motio
The purpose of this paper is to consider propagation of fin
amplitude azimuthal shear waves in a compressible isotropic e
tic solid. This is a plane-strain problem in which a spatially u
form azimuthal shearing stress is suddenly applied to the sur
of a circular cylindrical cavity in an unbounded medium, with t
radius of the cavity held constant. A purely mechanical theory
considered and a study by Haddow and Jiang@5# provides some
justification for this. The numerical procedure used can also
applied when there is a fixed outer radius which results in
flected waves. Numerical results are obtained for a class of s
energy functions which is a compressible generalization of
Mooney-Rivlin form and is given by

W5WD1H~ I 3!, (1.1)

where

WD5
m

2
$ f ~ I 123I 3

1/3!1~12 f !~ I 2 /I 323I 3
21/3!%, (1.2)

andH(I 3) satifies the conditionsH(1)5H8(I )50. In ~1.2!, m is
the shear modulus for infinitesimal deformation from the natu
reference state, 1> f >0, I 1 , I 2 , andI 3 are the principal invariants
of FTF or FFT, F is the deformation gradient tensor and the s

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ju
22, 1999; final revision, June 1, 2000. Associate Technical Editor: A. K. Mal. D
cussion on the paper should be addressed to the Technical Editor, Professor Le
Wheeler, Department of Mechanical Engineering, University of Houston, Hous
TX 77204-4792, and will be accepted until four months after final publication of
paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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perposedT denotes the transpose. For pure dilatationWD50, and
for isochoric deformationH50. The generalized Blatz and Ko
strain energy function~@6#! and the polynomial strain energy func
tion proposed by Levinson and Burgess@7# are examples of func-
tions which can be expressed in the form~1.1!.

It may be shown that

H~ I 3!5
1

2
K~ I 3

1/221!21O~ I 3
1/221!3, (1.3)

whereK is the bulk modulus for infinitesimal deformation from
the natural reference state, and the approximation

H~ I 3!5
1

2
K~ I 3

1/221!2, (1.4)

is applicable for sufficiently small values ofuI 3
1/221u, which de-

crease asK/m increases.
Numerical results are presented forK/m5100, which gives

Poisson’s ration50.495 for infinitesimal deformation from the
natural reference state. This is close to the valuen50.493, ob-
tained experimentally by Beatty and Stalnaker@8# for urethane.
For the problems considered, the volume strain,I 3

1/221, is a
second-order effect with its maximum absolute value less t
0.0035. Results were obtained using approximation~1.4!, and

H5
m

2 F f H 3I 3
1/32

~11n!

n
1

~122n!

n
I 3

2n/~122n!J
1~12 f !H 3I 3

21/32
~11n!

n
1

~122n!

n
I 3

n/~122n!J G ,
(1.5)

for the generalized Blatz and Ko model, and

H5
m

2 S 2313 f I 3
1/313~12 f !I 3

21/312~122 f !~ I 3
1/221!

1S 2 f 1
4n21

122n D ~ I 3
1/221!2D , (1.6)
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for the Levinson and Burgess model. The results obtained u
~1.4!, ~1.5!, and~1.6! were in very close agreement. Consequen
it is reasonable to assume the results are valid for any admis
form of H if approximation~1.4! is applicable.

Strain energy functions of the class~1.1! do not satisfy the
necessary conditions for the existence of static pure azimu
shear, and the propagation of finite amplitude azimuthal wa
involves coupled radial longitudinal waves.

A plane shear wave can propagate without a coupled p
longitudinal wave if a generalization of the neo-Hookean str
energy function, that is~1.1! with f 51, is assumed. For~1.1!,
with 1. f >0, a plane shear wave cannot exist without a coup
longitudinal wave. A brief discussion of the propagation of pla
shear and plane longitudinal waves is now given, as a prelimin
to the consideration of the azimuthal problem.

2 Plane Wave Problem
In this section we consider plane longitudinal and transve

waves propagating in theX1 direction of a half-space which is
defined in the natural reference state byX1>0, where OXa ,
aP$1,2,3%, is a rectangular Cartesian coordinate system. The
namic deformation is plane strain and is given by

x15x1~X1 ,t !, x25lX21q~X1 ,t !, x35X3 , (2.1)

where l is a constant,t is time, Xa , aP$1,2,3% and x1 , i
P$1,2,3% are the coordinates of a material particle in the natu
reference and current states, respectively. The special case
l51, is of most interest; however, the more general case of c
stant l is considered for comparison with the azimuthal sh
problem.

Components of the deformation gradient tensor are given b

@F#5F d 0 0

g l 0

0 0 1
G , (2.2)

whered5]x1 /]X1 , g5]q/]X1 . The principal invariants ofFTF
or FFT are then given by

I 15d21g21l211,

I 25l1g21d2d2l2, (2.3)

I 35l2d2.

A Lagrangian approach is used and the nominal stress tensor,S, is
a function ofF(X1 ,t),

S5Ŝ~F! and S~X1 ,t !5Ŝ~F~X1 ,t !!. (2.4)

The boundary conditions are

S11~0,t !5f~ t !, S12~0,t !5c~ t !, (2.5)

where S11 and S12 are the normal and tangential componen
respectively, of the stress vector acting on a material plane sur
normal to theX1-axis. The initial conditions are

S11~X1,0!5S12~X1,0!50 and V1~X1,0!5V2~X1,0!50,
(2.6)

whereV1 andV2 are the nonzero velocity components and are
the X1 andX2 directions, respectively. The nominal stresses,S11
and S12, are identical to the corresponding Cauchy stresses,s11
ands12 whenl51.

It is necessary to express~1.1!, as a function ofd, g, andl, and
it follows from ~1.1!, ~1.2!, and~2.3! that

Ŵ~d,g,l!

5
m

2 H f ~d21g21l21123l2/3d2/3!

1~12 f !~l221g2l22d221d221123l22/3d22/3!
J

1H~l2d2!. (2.7)
146 Õ Vol. 68, MARCH 2001
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The nominal stresses of interest are then given by

Ŝ115
]Ŵ

]d
5m$ f ~d2d21/3l2/3!

2~12 f !~l2d23g21d232l22/3d25/3!%

1
]H

]d
, (2.8)

Ŝ125
]Ŵ

]g
5m$ f g1~12 f !gl2d22%. (2.9)

If f 51, Ŝ11 depends only ond and the constant value ofl, andŜ12
depends only ong, so that there is a limited form of superpositio

Governing equations for the wave propagation problem are
compatibility equations,

]d

]t
2

]V1

]X1
50, (2.10a)

]g

]t
2

]V2

]X1
50, (2.10b)

and the equations of motion,

]V1

]t
2

1

r0

]S11

]X1
50, (2.11a)

]V2

]t
2

1

r0

]S12

]X1
50, (2.11b)

where r0 is the density in the natural reference configuratio
Equations~2.10! and ~2.11! are a totally hyperbolic system o
quasi-linear partial differential equations. The wave velocit
6cL and6cT , where the1~2! signs denote waves propagatin
in the1~2! X1 directions, are obtained as indicated in the text
Whitham @9#, and are given by

cL5A~c111c22!1A~c112c22!
214c12

2

2
,

cT5A~c111c22!2A~c112c22!
214c12

2

2
, (2.12)

where

c115
1

r0

]S11

]d
5

1

r0

]2Ŵ

]d2 , c225
1

r0

]S12

]g
5

1

r0

]2Ŵ

]g2 ,

c125
1

r0

]2Ŵ

]g]d
. (2.13)

It is evident from~2.12! that cL.cT , consequentlycL andcT are
the propagation speeds of what are essentially longitudinal
shear waves, respectively. Iff 51 it follows from ~2.7! and~2.13!
thatc1250, c11 is a function ofd and the constant value ofl only,
and c22 is a constant, so that the wave speedscL5Ac11 and cT
5Ac22 are uncoupled. It also follows that, iff 51, the system of
equations~2.10a!, ~2.11a!, governing longitudinal wave propaga
tion, and the system~2.10b!, ~2.11b!, governing shear wave
propagation, are uncoupled, consequently a plane shear wave
propagate without a coupled longitudinal wave.

3 Formulation of Azimuthal Shear Problem
The surface of a circular cylindrical cavity of fixed radius,A, in

an unbounded medium, is subjected to a spatially uniform sud
application of azimuthal shearing stress. The numerical sch
used to obtain solutions is applicable to consider reflected wa
Transactions of the ASME
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propagating radially inwards from an outer cylindrical surfac
however, in this paper we consider only waves traveling radia
outwards.

Cylindrical polar coordinates of a material point are denoted
R,Q,Z in the natural reference configuration and byr ,u,z in the
deformed configuration. The deformation is plane strain and
given by

r 5r ~R,t !, u5Q1g~R,t !, z5Z, (3.1)

so that the components of the deformation gradient tensor ar

@F#5F r 8 0 0

rg8 r /R 0

0 0 1
G , (3.2)

where a prime denotes the partial derivative with respect toR. The
following notation is introduced:

ġ5v, ṙ 5Vr , vr 5Vu , (3.3)

and

r 85d, r /R5l, g85a and rg85g, (3.4)

where a superposed dot denotes partial differentiation with res
to t. If r /R51 in ~3.2! the resulting isochoric deformation is pur
azimuthal shear, and~3.2! is of the same form as~2.2! with l51.
Certain compressible strain energy functions admit static pure
muthal shear deformation; however, it is probable that there is
compressible strain energy function which will admit dynam
pure azimuthal shear.

Again a Lagrangian approach is adopted and, similar to~2.4!,

S5Ŝ~F! and S~R,t !5Ŝ~F~R,t !!.

The components ofS are

@S#5F SRr SRu 0

SQr SQu 0

0 0 SZz

G .

However, onlySRr , SRu , and SQu are of interest for the wave
propagation problem and these are given by

ŜRr5
]Ŵ

]d
, SQu5

]Ŵ

]l
, SRu5

]Ŵ

]g
, (3.5)

where the strain energy function is a functionW5Ŵ(d,l,g) of d,
l, andg.

The boundary conditions are

SRu~A,t !5S0U~ t !, r ~A,t !5A⇒Vr~A,t !50, l~A,t !51,
(3.6)

whereU(t) is the unit step function andS0 is a constant, and the
initial conditions are

S~R,0!50, Vr~R,0!5Vu~R,0!50. (3.7)

4 Governing Equations for Azimuthal Shear Problem
The following compatibility equations can be deduced fro

~3.3! and ~3.4!

]l

]t
2

Vr

R
50, (4.1a)

]d

]t
2

]Vr

]R
50, (4.1b)

]a

]t
2

]v

]R
50, (4.1c)

and the equation of motion in vector form is
Journal of Applied Mechanics
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m

DivS5r0a, (4.2)

wherea is the acceleration with nonzero components,

ar5V̇r2lRv2, (4.3a)

au5lRv̇12Vrv, (4.3b)

and r0 is the density in the natural reference configuration. T
nontrivial components of~4.2! are

]SRr

]R
1

SRr2SQu

R
2aSRu5r0~V̇r2lRv2!, (4.4)

and

]SRu

]R
1

SRu

R S 11
d

l D5r0~lRv̇12Vrv!. (4.5)

In order to apply the numerical scheme it is necessary to put
system of equations given by~4.1!, ~4.4!, and~4.5! in the conser-
vation form

]Q

]t
1

]H~Q!

]R
1b~Q!50, (4.6)

whereQ5(l,d,g,Vr ,Vu)T, the superposedT denotes the trans
pose andb is a source term.

Equations~4.1a! and ~4.1b! are in a form suitable for~4.6!;
however,~4.1c! must be put in the form

]g

]t
2

]Vu

]R
1S Vud2Vrg

Rl D50, (4.7)

which is obtained by using the relationsg5lRa and Vu
5lRv. Also the acceleration components~4.3! must be put in the
form

ar5
]Vr

]t
2

Vu
2

lR
, au5

]Vu

]t
1

VrVu

lR
. (4.8)

At this stage it is convenient to adopt the following nondime
sionalization scheme:

~ r̄ ,R̄!5~r ,R!/A, ~W̄,S̄!5~W,S!/m, t̄5t~m/r0!1/2/A,

~V̄r ,V̄u!5~Vr ,V!u /~m/r0!1/2, v̄5vA/~m/r0!1/2, (4.9)

ā5ar0A/m.

Henceforth nondimensional quantities are used, with the over
omitted, and primes and superposed dots now denote partial
ferentiation with respect to nondimensionalR and t, respectively.
Since the overbars are omitted~4.1a,b! and ~4.7! are unchanged
by the nondimensionalization.

The nondimensional forms of the matrices in~4.6!,

Q5F l
d
g
Vr

Vu

G , H5F 0
2Vr

2Vu

2SRr

2SRu

G
and

b5F 2Vr /R
0

~Vud2Vrg!/~lR!

2~SRr2SQu!/R1gSRu /~lR!2Vu
2 /~lR!

2SRu~11d/l!/R1VrVu /~lR!

G , (4.10)

are formed from~4.1a!, ~4.1b!, ~4.7! and the nondimensiona
forms of ~4.4! and ~4.5! with the acceleration components give
by ~4.8!. In order to determine the wave velocities,~4.6! must be
put in the form
MARCH 2001, Vol. 68 Õ 147
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rds
m
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tively,
]Q

]t
1A~Q!

]Q

]t
1b850, (4.11)

where

A5]H~Q!/]Q, (4.12)

andb85b, sinceA is not an explicit function ofR and/ort. Equa-
tion ~4.11! represents a totally hyperbolic system for the pres
problem and the wave velocities are given by the eigenvalue
A. The numerical scheme used does not involve the relat
along the characteristics consequently the eigenvectors ofAT are
not required. It follows from~4.10! and ~4.12! that

A5F 0 0 0 0 0

0 0 0 21 0

0 0 0 0 21

A41 A42 A43 0 0

A51 A52 A53 0 0

G , (4.13)

where

A4152
]SRr

]l
52

]2Ŵ

]d]l
, A4252

]SRr

]d
52

]2Ŵ

]d2 ,

A4352
]SRr

]g
52

]2Ŵ

]d]g
,

(4.14)

A5152
]SRu

]l
52

]2Ŵ

]l]g
, A5252

]SRu

]d
5A43,

A5352
]SRu

]g
52

]2Ŵ

]g2 .

The eigenvalues ofA are

0, 6H 1

2
@2~A421A53!6$~A422A53!

214A43
2 %1/2#J 1/2

,

(4.15)

Fig. 1 Relationships between g and nondimensional radius R
for nondimensional times 0.1, 0.2, 0.3, 0.4, 0.5 and fÄ1 and f
Ä0.6
148 Õ Vol. 68, MARCH 2001
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and the nonzero eigenvalues are denoted by6cL and6cT , where
the1~2! signs denote waves propagating in the radially outwa
~radially inwards!. For comparison with the plane wave proble
cL andcT are expressed in the form

cL5A~c111c22!1A~c112c22!
214c12

2

2
, (4.16a)

cT5A~c111c22!2A~c112c22!
214c12

2

2
, (4.16b)

where

c1152A425
]2Ŵ

]d2 , c2252A535
]2Ŵ

]g2 , c1252A435
]2Ŵ

]d]g
.

(4.17)

In ~4.16! cL.cT andcL andcT represent an essentially longitud
nal wave speed and an essentially shear wave speed, respec
as for the plane case.

The nondimensional form of~2.7! is

Ŵ~d,g,l!

5
1

2 H f ~d21g21l21123l2/3d2/3!

1~12 f !~l221g2l22d221d221123l22/3d22/3!
J

1
1

m
H~l2d2!, (4.18)

where d, l, and g are given by~3.4! for the azimuthal shear
problem. It follows from~4.17! and ~4.18! that

c115 f ~111/3l2/3d24/3!1~12 f !~3d24l22g213d24

25/3l22/3d28/3!1
1

m

]2H

]d2 (4.19a)

c225 f 1~12 f !d22l22, (4.19b)

c12522~12 f !gd23l22. (4.19c)

Fig. 2 Relationships between nondimensional Vu and nondi-
mensional radius R for nondimensional times 0.1, 0.2, 0.3, 0.4,
0.5 and fÄ1 and fÄ0.6
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Fig. 3 Relationships between dÀ1 and nondimensional radius R for nondimensional times
0.1, 0.2, 0.3, 0.4, 0.5
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If f 51 in ~4.18!, it follows from ~4.19! that c1250, c11 is a
function of d andl only, andc2251, so that the wave speeds a

cL5Ac115S 111/3l2/3d24/31
1

m

]2H

]d2 D 1/2

and cT5Ac2251,

and are uncoupled. However, unlike the plane problem, the g
erning equations for the essentially longitudinal wave propaga
and those for essentially shear wave propagation are coupled,
sequently an azimuthal shear wave cannot exist without a cou
longitudinal wave forf 51.

5 Numerical Method
Numerical results were obtained using a modified second-o

Godunov-type finite difference scheme. Application of th
scheme requires that the governing system of equations be
pressed in the conservation form~4.6!. In order to implement the
scheme a thick-walled cylinder with nondimensional inner a
outer radii 1 andB, respectively, is considered. The interval@1,B#
is discretized intom equal cells of lengthDR5(B21)/m and
d Mechanics
e

ov-
ion
con-
led

der
is
ex-

nd

Ri511( i 21)DR, i P$1,m11%. For a typical time stept
P@ tn,tn11# and jth cell RP@Rj ,Rj 11# the weak form of the gov-
erning equation can be formulated as

E
tn

tn11E
Rj

Rj 11S ]Q

]t
1

]H

]R
1bDdR dt50, (5.1)

using the finite volume method. Integration of~5.1! by parts gives

Q̄j 11/2
n11 5Q̄j 11/2

n 2
Dt

DR
~Ĥ j 112Ĥ j !2Dtb̃j 11/2, (5.2)

where the superposed bar, caret, and tilde denote spatial, time
volume-averaged quantities, respectively, whereas the subsc
and superscripts indicate time and space discretizations. Fu
approximations for the time-averaged values give

Q̄j 11/2
n11 5Q̄j 11/2

n 2
Dt

DR
@H~Q̂j 11!2H~Q̂j !#2DtbF1

2
~Q̂j 111Q̂j !G ,

(5.3)
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Fig. 4 Relationships between nondimensional Vr and nondimensional radius R for nondi-
mensional times 0.1, 0.2, 0.3, 0.4, 0.5
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where theQ̂j , j P$1,2, . . . ,m11%, are obtained by solving a Rie
mann problem at each cell interface and by considering the ap
priate boundary conditions.

The present implementation of the second-order Godunov-
finite difference method follows the procedure proposed by
Leer @10# and represents the state variables at a given time-s
tn, by piecewise linear functions of the form

Q~R,tn!5Q̄j 11/2
n 1

~DQj 11/2
n !av

DR
~R2Rj 11/2!,

for RP@Rj ,Rj 11#, (5.4)

where (DQj 11/2
n )av denotes the spatial-averaged slopes of the s

variables which can be evaluated from the spatial-averaged
ues,Q̄n, in adjacent cells using a monotonic condition defined

~2Dqj 11/2
n !av5H min~ uaj 11/2

n u/2, 2ubj
nu, 2ucj 11

n u!3sgn~aj 11/2
n !,

if sgn~bj
n!5sgn~cj 11

n !,
0, otherwise,

(5.5)
ARCH 2001
pro-

ype
an
tep,

ate
val-
as

where

aj 11/2
n 5q̄ j 13/2

n 2q̄ j 21/2
n , bj

n5q̄ j 11/2
n 2q̄ j 21/2

n ,

cj 11
n 5q̄ j 13/2

n 2q̄ j 11/2
n

and

qP$l,d,g,Vr ,Vu%.

The state variables at the cell boundaries at a half time-s
tn11/2, can be calculated using Taylor series expansions

~Qj
n11/2!15Q̄j 11/2

n 1
Dt

2 S ]Q

]t D
j 11/2

n

2
DR

2 S ]Q

]RD
j 11/2

n

,

(5.6a)

~Qj 11
n11/2!25Q̄j 11/2

n 1
Dt

2 S ]Q

]t D
j 11/2

n

1
DR

2 S ]Q

]RD
j 11/2

n

,

(5.6b)

where the superscript1~2! denotes the state variables at the rig
~left! side of the cell interface. Approximating the spatial deriv
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Fig. 5 Relationships between lÀ1 and nondimensional radius R for nondimensional times
0.1, 0.2, 0.3, 0.4, 0.5
m

n
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ite
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ds,
ty of
tives in ~5.6! by the spatial averaged slopes and eliminating ti
derivatives by using the linearized form of the system of gove
ing equations~4.11! gives

~Qj
n11/2!15Q̄j 11/2

n 2
1

2 F I1
Dt

DR
A~Q̄j 11/2

n !G~DQj 11/2
n !av

2
Dt

2
b~Q̄j 11/2

n !, (5.7a)

~Qj 11
n11/2!25Q̄j 11/2

n 1
1

2 F I2
Dt

DR
A~Q̄j 11/2

n !G~DQj 11/2
n !av

2
Dt

2
b~Q̄j 11/2

n !, (5.7b)

whereA andb are the Jacobian matrix and source term, as defi
earlier in this paper, andI denotes the unit matrix.

In order to calculate the time-averaged state variables,Q̂j , a
Riemann problem must be solved at each cell interface to res
ed Mechanics
e
rn-

ed

lve

discontinuities between the right and left states (Qj
n11/2)1 and

(Qj
n11/2)2. Since the overall accuracy of the Godunov-type fin

difference scheme is usually controlled by the order of the spa
discretizations, an approximate Riemann problem solver has b
developed in the present work based on the jump relations

6UL@Q#5@H#, (5.8a)

6UT@Q#5@H#, (5.8b)

which follow from ~4.6!. In ~5.8a,b!, UL and UT are the essen-
tially longitudinal and essentially transverse discontinuity spee
respectively, and the square brackets denote the discontinui
the enclosed quantity. ApproximatingUL and UT by the corre-
sponding wave speedscL andcT given in ~4.16! leads to

~cL j
n11/2!1~ d̂ j2~d j

n11/2!1!1~V̂r2~Vr j
n11/2!1!50, (5.9a)

~cL j
n11/2!2~ d̂ j2~d j

n11/2!2!2~V̂r2~Vr j
n11/2!2!50, (5.9b)

and
MARCH 2001, Vol. 68 Õ 151



h

i

i

e

i

p

s
n

a

n

ck

this

ed,

ock,
ig.

ual

me
the

and

ns,

if
ot be
aga-
y. It
pos-
till

m-

of
Iso-

y-
.,

al
Non-

ve

e

le
J.

ite

me,
~cT j
n11/2!1~ ĝ j2~g j

n11/2!1!1~V̂u2~Vu j
n11/2!1!50,

(5.10a)

~cT j
n11/2!2~ ĝ j2~g j

n11/2!2!2~V̂u2~Vu j
n11/2!2!50.

(5.10b)

The time-averaged value ofl is approximated by

l̂j5
1

2
~~l j

n11/2!11~l j
n11/2!2!. (5.11)

The boundary conditions must be considered in order to comp
the numerical algorithm. For the inner surface the boundary c
ditions ~3.6! give

l̂151, V̂r150,

d̂15~d1
n11/2!12~V̂r12~Vr1

n11/2!1!/~cL1
n11/2!1,

(5.12)
ĝ15S0 /~ f 1~12 f !l̂1

22d̂1
22!,

V̂u15~Vu1
n11/2!12~ ĝ12~g1

n11/2!1!3~cT1
n11/2!1.

The boundary conditions atR5B can also be treated using
similar approach. If it is assumed that both radial and tangen
displacement components are zero atR5B then

l̂m1151, V̂rm115V̂um1150,

d̂m115~dm11
n11/2!21~V̂rm112~Vrm11

n11/2!2!/~cLm11
n11/2!2,

(5.13)

ĝm115~gm11
n11/2!21~V̂um112~Vum11

n11/2!2!/~cTm11
n11/2!2.

Although numerical results for times before the longitudin
wave reachesR5B are presented in this paper, it is clear that t
finite difference scheme can be used to obtain solutions wh
involve multiple wave reflection and interactions.

6 Numerical Results
In Figs. 1–5, results for,g, d, l, Vr , andVu are shown graphi-

cally, as functions ofR, for times 0.1 to 0.5,f 51 and f 50.6,
K/m5100, boundary conditions~3.6! with S051, and initial con-
ditions ~3.7!. These results were obtained using approximat
~1.4! or the Levinson and Burgess relation~1.6!. Results obtained
using ~1.4! differ negligibly from those obtained using~1.6! and
any differences can not be shown in the figures. Results obta
using the Blatz and Ko relation~1.5! are in very close agreemen
with those obtained using~1.4! or ~1.6!.

Results forg andVu exhibit negligible dependence onf and are
shown in Figs. 1 and 2, respectively, for both values off, since
any difference between results forf 51 and f 50.6 can not be
shown graphically with scales of Figs. 1 and 2. Qualitative diff
ences between the results forf 51 andf 50.6 are evident ford, l
andVr , which result from the coupled longitudinal wave. How
ever, it is also evident from the figures that the coupled long
dinal wave is a second-order effect.

First consider the numerical results forf 51. There is a discon-
tinuity at the transverse wave front across which there is a jum
g and SRu but no jump ind and SRr , and g50 ahead of the
discontinuity. This discontinuity is not strictly a shock sincecT
51, so that the discontinuity speed is equal to the wave sp
behind and ahead of the discontinuity. This type of discontinu
is sometimes called a contact discontinuity~@11#!. The longitudi-
nal wave is an acceleration wave and exhibits no discontinuitie
d or ]l/]R. Since the wave speeds are uncoupled the jump ig
across the transverse discontinuity does not affect the longitud
wave speed so that it is continuous, along withd, across the dis-
continuity.

Now consider the results forf 50.6. The results shown in Figs
3 and 4 indicate that shocks occur. There is an essentially tr
152 Õ Vol. 68, MARCH 2001
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verse shock with speedUT . Across this shock there is a jump i
g, andVu , which coincides with a jump ind andVr so that there
is also a jump inSRr and SRu . Ahead of this shockg50 and
SRu50. There is also an essentially longitudinal shock with sho
speedUL.UT . Across this shock there is a jump ind, Vr and
SRr . The numerical scheme has produced some smearing for
shock. The two shock speedsUT andUL , which are taken to be
positive since radially outward wave propagation is consider
satisfy the conditions

cT
2.UT.cT

1 , cL
2.UL.cL

1 ,

and the jumps satisfy the jump relations

U@Q#5@H#, (6.1)

across a shock where@f#5f22f1, and f1 and f2 are the
values of the enclosed quantity ahead of and behind the sh
respectively, andU is the shock speed. The results shown in F
5 indicate that there is also a jump in]l/]R across a jump ind.

Results were also obtained for values off, 1. f .0.6, in order
to examine the effect of incremental changes off on the relations
for l, d, and Vr . These results indicate that there is a grad
transition from the relations forf 51 to the qualitatively different
relations forf 50.6, which involve shocks. These shocks beco
stronger asf is decreased and this is related to the coupling of
wave speeds forf ,1.

7 Concluding Remarks
For the problems considered in this paper, the longitudinal

transverse wave speeds are uncoupled if, and only if,]2Ŵ/]g]d
50. It is easily deduced that, for isotropic strain energy functio
this condition can be satisfied only ifW(I 1 ,I 2 ,I 3) is of the form

W5C1~ I 123!1C2~ I 223!1H1~ I 3!, (7.1)

where C1 and C2 are constants,H1(1)50 and C112C2

1H18(1)50. Strain energy function~1.1! with f 51 is a special
case of~7.1!. However, for azimuthal shear deformation, even
the wave speeds are uncoupled the governing equations can n
separated into two uncoupled systems which govern the prop
tion of a transverse wave and a longitudinal wave, respectivel
seems that dynamic pure azimuthal shear deformation is not
sible in a compressible hyperelastic solid; however, this s
awaits a rigorous proof.
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A dispersive model is developed for wave propagation in periodic heterogeneous m
The model is based on the higher order mathematical homogenization theory with
tiple spatial and temporal scales. A fast spatial scale and a slow temporal scale
introduced to account for the rapid spatial fluctuations as well as to capture the long-
behavior of the homogenized solution. By this approach the problem of secularity, w
arises in the conventional multiple-scale higher order homogenization of wave equa
with oscillatory coefficients, is successfully resolved. A model initial boundary v
problem is analytically solved and the results have been found to be in good agree
with a numerical solution of the source problem in a heterogeneous medium.
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1 Introduction
When the wavelength of a traveling signal in a heterogene

medium is comparable to the characteristic length of the mic
structure, successive reflection and refraction of the waves
tween the interfaces of the material lead to significant dispers
effect ~see, for example,@1–3#!. This phenomenon cannot be pr
dicted by the classical homogenization theory and thus promp
a significant interest in the scientific community in attempt
develop a dispersive effective medium theory.

The use of multiple-scale expansions as a systematic too
averaging for problems other than elastodynamics can be trac
Sanchez-Palencia@4#, Benssousan, Lions, and Papanicoulau@5#,
as well as Bakhvalov and Panasenko@6#. The role of higher order
terms in the asymptotic expansion has been investigated in st
by Gambin and Kroner@7# and Boutin @8#. In elastodynamics,
Boutin and Auriault@9# demonstrated that the terms of a high
order successively introduce effects of polarization, dispers
and attenuation.

There is a substantial number of articles utilizing multiple-sc
homogenization techniques for wave propagation problems in
riodic media. Most often, a single-frequency time-dependenc
assumed prior to the homogenization process@10#. A notable ex-
ception is a recent article of Fish and Chen@11#, which investi-
gated an initial boundary value problem with rapidly varying c
efficients by employing the multiple-scale homogenizati
technique. It was shown that while higher order terms are cap
of capturing dispersion effects, they introduce secular terms wh
grow unbounded with time. When the observation time is sm
higher order terms introduce the necessary correction to the l
ing order term to resolve the dispersion effect. However, as
time window increases, the higher order terms become close
larger than the leading order term owing to the existence of se
larity. In this case the asymptotic expansion ceases to be vali

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Fe
ruary 3, 2000; final revision, August 15, 2000. Associate Editor: A. K. Mal. Disc
sion on the paper should be addressed to the Editor, Professor Lewis T. Wh
Department of Mechanical Engineering, University of Houston, Houst
TX 77204-4792, and will be accepted until four months after final publication
the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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the conventional multiple-scale homogenization technique, th
secular terms cannot be cancelled out. To our best knowledge
present manuscript represents a first attempt to resolve the p
lem of secularity within the framework of the multiple-scale h
mogenization for wave propagation in composites.

For dynamic problems, described by hyperbolic different
equations, there are at least four scales involved:~1! the scale of
the microstructure,~2! the scale of the macrostructure,~3! the
shortest wavelength of the signal traveling in the media, and~4!
the time scale of observation. The dispersion phenomena bec
prominent when the time window is large enough. Therefore
order to properly model the dispersion effect, it is desirable
construct uniformly valid asymptotic expansions.

The primary objective of the current manuscript is to study
problem of secularity introduced by the higher order multip
scale approximation of the initial boundary value problem in p
riodic heterogeneous media. We first consider fast spatial
temporal scales in addition to the usual space-time coordina
The resulting unit cell problem is shown to be hyperbolic givi
rise to fast time-dependence of the solution in the unit cell
main, while the resulting macroscopic equation is the same a
the classical multiple spatial scale analysis and thus failing
resolve dispersion effects. The main contribution of the pres
paper is given in Sec. 3.2, where we introduce a fast spatial s
aimed to account for rapid spatial fluctuations of material prop
ties and a slow temporal scale designated to capture the long-
behavior of the homogenized solution. The resulting macrosco
equations of motion are solved analytically in Sec. 4 for an illu
trative initial boundary value problem.

2 Problem Description
We consider wave propagation normal to the layers of a p

odic elastic bilaminate withV as the characteristic length~see Fig.
1!. The governing equation for this elastodynamics problem
given by

r~x/«!u;tt2@E~x/«!u;x# ;x50 (1)

with appropriate boundary conditions on the domain bound
and initial conditions

u~x,0!5 f ~x!, u;t~x,0!5q~x! (2)
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where u(x,t) represents the displacement field;r(x/«) and
E(x/«) are the mass density and elastic modulus, respectiv
( );x and ( );t denote differentiation with respect tox and time,
respectively; and 0,«!1 in Eq. ~1! is used to express a rapi
spatial variation of material properties.

The goal is to establish an effective homogeneous mode
which the local fluctuations due to the heterogeneities do not
pear explicitly and the response of the original heterogeneous
terial can be approximated by the response of the effective ho
geneous medium. This is facilitated by the method of multip
scale asymptotic expansion.

3 Asymptotic Analysis With Multiple Spatial and
Temporal Scales

Under the premise that the composite macro-reference len
L5l/(2p) ~l the macroscopic wavelength! ~@9,12#! is much
larger than the unit cell dimensionV, i.e., V/L5(vV)/c5kV
!1, wherev, k, andc are the circular frequency, wave numbe
and phase velocity of the macroscopic wave, respectively, i
convenient to introduce a microscopic spatial length variably
such that

y5x/«. (3)

In addition to this fast spatial variable, we will experiment wi
various time scales

j5«mt (4)

where m is an integer. Since the response quantitiesu and s
depend onx, y5x/«, t, andj5«mt, a two-scale asymptotic ex
pansion is employed:

u~x,y,t,j!5(
i 50

n

« iui~x,y,t,j!,

s~x,y,t,j!5 (
i 521

n

« is i~x,y,t,j!. (5)

The homogenization process consists of inserting
asymptotic expansions~5! into the governing Eq.~1!, identifying
the terms with equal power of«, and then solving the resulting
problems.

Following the aforementioned procedure and replacing the s
tial derivative ( );x by ( ),x1«21( ),y and the time derivative ( );t

by ( );t1«m( ) ,j , we obtain a series of equations in ascendi
power of« starting with«22. We successively equate the facto
of each of these powers to zero.

3.1 Fast Spatial-Temporal Scales. We first experiment
with the case ofm521. The resulting two time scales are relate
by

j5t/«5h. (6)

At O(«22), we get

Fig. 1 A bilarninate with periodic microstructure
154 Õ Vol. 68, MARCH 2001
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r~y!u0,hh2@E~y!u0,y# ,y50 (7)

from where it can be easily shown thatu0 is independent ofy and
h, thus

u05U0~x,t !. (8)

For O(«21) equation we get

r~y!u1,hh2@E~y!~u0,x1u1,y!# ,y50. (9)

Owing to linearity of the above equation, the solution tou1 can
be sought in the form

u1~x,y,t,h!5U1~x,t !1M ~y,h!u0,x . (10)

Substituting Eq.~10! into ~9! yields

r~y!M ,hh2@E~y!~11M ,y!# ,y50. (11)

Consider the unit cell in Fig. 1. The cell domain consists
subdomainsA(1) and A(2), occupied by materials tagged by su
perscripts 1 and 2, respectively, such that

A~1!5@yu0,y,aV̂#, A~2!5@yuaV̂,y,V̂# (12)

where 0<a<1 is the volume fraction of the unit cell;V is the
unit cell domain in the stretched coordinate systemy, such that
V/V̂5«. Since material properties are piece-wise constant o
the unit cell, Eq.~11! can be written as

M j ,hh2cj
2M j ,yy50, ~ j 51,2! (13)

where

c15AE1 /r1, c25AE2 /r2. (14)

The boundary conditions for the unit cell problem described
Eq. ~13! are

~a! Periodicity: u1~y50!5u1~y5V̂!,

s0~y50!5s0~y5V̂!

~b! Continuity: @u1~y5aV̂!#50, @s0~y5aV̂!#50
(15)

where@ # is the jump operator and

s i5E~y!~ui ,x1ui 11,y!, i 50,1, . . . ,n. (16)

For simplicity, initial conditions are taken as

M j~y,0!5M j ,h~y,0!50, ~ j 51,2!. (17)

We solve the unit cell problem defined by Eqs.~13!, ~15!–~17!
using the method of Laplace transform. The detailed solutions
given in the Appendix.

From the solutions forM (y,h), it can be observed tha
M (y,h) consists of two parts. The first part is fast tim
independent whereas the second part is fast time-dependent.

Finally, for O(1) equation, we get

r~y!~u0,tt12u1,th1u2,hh!2@E~y!~u0,x1u1,y!# ,x

2@E~y!~u1,x1u2,y!# ,y50. (18)

For aV-periodic functiong5g(x,y,t,j), we define an averag
ing operator

^g&5
1

uV̂u
E

V̂
g~x,y,t,j!dy. (19)

Applying the above averaging operator to Eq.~18! and making
use of the solution foru1 , we arrive at

^r~y!&u0,tt1^r~y!u2,hh&2^E~y!~11M ,y!&u0,xx50. (20)

We assume that fast time-average
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0

T

ui~x,y,t,h!dh (21)

exists and is finite. Following Francfort@13#, we suppose that

lim
s→0

sūi (22)

exists and is finite, whereūi is the Laplace transform ofui with
respect to the fast timeh. Taking the Laplace transform of Eq
~20! with respect toh and performing the averaging in the fa
time, we get the macroscopic equation of motion atO(1):

r0u0,tt2E0u0,xx50 (23)

where

r05^r&5ar11~12a!r2 , E05
E1E2

~12a!E11aE2
. (24)

It can be seen that the macroscopic equation of motion atO(1)
is nondispersive. It can be also derived without introduction of
fast time-scale~see Sec. 3.2!. Proceeding with the derivation o
the higher order terms reveals that the fast time-dependence o
displacement field introduces secular terms atO(«2) and higher.
Hence the fast time-scaling does not capture the dispersion e

3.2 Fast Spatial and Slow Temporal Scales. In this sec-
tion we experiment with a fast spatial scale aimed at accoun
for the rapid spatial fluctuations of material properties and a s
temporal scale intended for the long-term behavior of the hom
enized solution. We selectm52, i.e.,

j5«2t5t. (25)

At O(«22), we have

@E~y!u0,y# ,y50. (26)

The general solution to the above equation is

u05a1~x,t,t!E
y0

y01y 1

E~z!
dz1a2~x,t,t! (27)

wherea1(x,t,t) and a2(x,t,t) are integration constants. Due t
periodicity of u0 , a1(x,t,t) vanishes, implying that the leading
order displacement depends only on the macroscale, i.e.,

u05u0~x,t,t!. (28)

At the next orderO(«21), the perturbation equation is

@E~y!~u0,x1u1,y!# ,y50. (29)

Due to linearity, the general solution ofu1 becomes

u1~x,y,t,t!5U1~x,t,t!1N~y!u0,x . (30)

Substituting Eq.~30! into ~29! yields

@E~y!~11N,y!# ,y50. (31)

Equation~31! together with the periodicity and continuity con
ditions of u1 and s0 over the unit cell domain as well as th
normalization condition̂ N(y)&50 define the unit cell boundary
value problem, from whichN(y) can be uniquely determined a

N1~y!5
~12a!~E22E1!

~12a!E11aE2
Fy2

aV̂

2
G ,

N2~y!5
a~E12E2!

~12a!E11aE2
Fy2

~11a!V̂

2
G . (32)

It is interesting to note thatN(y) is the same as the fast time
independent part ofM (y,h) in the previous section.

At O(1), theperturbation equation is
Journal of Applied Mechanics
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r~y!u0,tt2@E~y!~u0,x1u1,y!# ,x2@E~y!~u1,x1u2,y!# ,y50.
(33)

Applying the averaging operator defined in Eq.~19! to the
above equation and taking into account the periodicity ofs1 , we
get the nondispersive macroscopic equation of motion atO(1),
which is identical to Eq.~23!. In order to capture the dispersio
effect, we proceed to higher order terms.

3.2.1 O(«) Homogenization. Higher order correction,u2 ,
can be determined fromO(1) perturbation Eq.~33!. Substituting
Eqs.~30! and ~23! into ~33!, yields

@E~y!~u2,y1U1,x1Nu0,xx!# ,y5E0@r~y!/r021#u0,xx . (34)

Linearity suggests thatu2 may be sought in the form

u2~x,y,t,t!5U2~x,t,t!1N~y!U1,x1P~y!u0,xx . (35)

Substituting the above expression into Eq.~34! yields

@E~y!~N1P,y!# ,y5E0@r~y!/r021#. (36)

The boundary conditions for the above equation are: periodi
and continuity ofu2 ands1 as well as the normalization conditio
^P(y)&50. Here we only provide general ideas. For detailed
lution of the unit cell boundary value problem we refer to@11#.
OnceP(y) is found, we can calculate

^rN&50, ^E~N1P,y!&50, ^E~u1,x1u2,y!&5E0U1,x .
(37)

Consider the equilibrium equation ofO(«):

r~y!u1,tt2@E~y!~u1,x1u2,y!# ,x2@E~y!~u2,x1u3,y!# ,y50.
(38)

Applying the averaging operator to the above equation, expl
ing the periodicity ofs2 and making use of~37!, we arrive at

r0U1,tt2E0U1,xx50. (39)

3.2.2 O(«2) Homogenization. Substituting Eqs.~30!, ~35!,
and ~39! into theO(«) equilibrium Eq.~38! yields

@E~y!~u3,y1Pu0,xxx1NU1,xx1U2,x!# ,y5E0~r~y!/r021!U1,xx

1@E0Nr~y!/r02E~y!~N1P,y!#u0,xxx . (40)

Due to linearity of the above equation, the general solution
u3 is as follows:

u3~x,y,t,t!5U3~x,t,t!1N~y!U2,x1P~y!U1,xx1Q~y!u0,xxx .
(41)

Substituting the above expression into Eq.~40! gives

@E~y!~P1Q,y!# ,y5E0Nr~y!/r02E~y!~N1P,y!. (42)

The above equation, together with the periodicity and conti
ity of u3 ands2 over the unit cell domain as well as the norma
ization condition^Q(y)&50, fully determinesQ(y). After Q(y)
is solved for, we can calculate

^rP&5
@a~12a!#2~r22r1!~E1r12E2r2!E0V̂2

12r0E1E2
. (43)

^E~P1Q,y!&52
a~12a!E0V̂2

12r0

3H ~E22E1!@a2r12~12a!2r2#1E0r0

~12a!E11aE2
2r0J .

(44)

Finally, consider the equilibrium equation ofO(«2):

r~y!@u2,tt12u0,tt#2@E~y!~u2,x1u3,y!# ,x

2@E~y!~u3,x1u4,y!# ,y50. (45)
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Applying the averaging operator to the above equation, tak
into account the periodicity ofs3 and making use of Eqs.~43! and
~44! lead to

r0U2,tt2E0U2,xx5
1

«2 Edu0,xxxx22r0u0,tt (46)

where

Ed5
@a~12a!#2~E1r12E2r2!2E0V2

12r0
2@~12a!E11aE2#2 . (47)

Ed characterizes the effect of the microstructure on the ma
scopic behavior. It can be seen that it is proportional to the squ
of the dimension of the unit cellV. For a homogeneous materia
a50 or a51, and in the case of identical impedance of the t
material constituents (r 5z1 /z251, z5AEr), Ed vanishes.

Remark 1: In absence of the slow time-scale, the macrosco
equation of motion atO(«2) is

r0U2,tt2E0U2,xx5
1

«2 Edu0,xxxx. (48)

In Sec. 4 we will show that the solution of this equation intr
duces secular terms.
Remark 2: Alternatively, we could have consider slow time sca
ing with m51, i.e., j5«t5z. The homogenized equations o
motion in this case are

r0 U1,t«2E0U1,xx522r0u0,tz (49)

r0U2,tt2E0U2,xx5
1

«2 Edu0,xxx22r0U1,tz2r0u0,zz . (50)

It can be shown that in this case the forcing term of O~«! mac-
roscopic equation vanishes, and consequently this scaling doe
lead to meaningful results.

3.3 Summary of Macroscopic Equations. In this section
we summarize various order macroscopic equations of mo
which have been derived in the previous section and presc
initial and boundary conditions.

The macroscopic equations of motion are

O~1!: r0u0,tt2E0u0,xx50 (23)

O~«!: r0U1,tt2E0U1,xx50 (39)

O~«2!: r0U2,tt2E0U2,xx5
1

«2 Edu0,xxx22r0u0,tt (46)

We consider the following problem: a domain composed of
array of bilaminates with fixed boundary atx50 and free bound-
ary atx5 l subjected to an initial disturbancef (x) in the displace-
ment field. At O(1), the displacement field is determined b
equation of motion~23! and the following initial and boundary
conditions:

ICs: u0~x,0,0!5 f ~x!, u0,t~x,0,0!5q~x!50 (51)

BCs: u0~0,t,t!50, u0,x~ l ,t,t!50 (52)

The calculation of the field«U1(x,t,t) is performed by solving
equation of motion~39!. The initial and boundary conditions ap
plied to «U1(x,t,t) must be such that the global fieldu0(x,t,t)
1«U1(x,t,t) meets macroscopic initial conditions and conditio
imposed on the boundary, i.e.,

u0~x,0,0!1«U1~x,0,0!5 f ~x!,

u0,t~x,0,0!«U1,t~x,0,0!5q~x!50

u0~0,t,t!1«U1~0,t,t!50, u0,x~ l ,t,t!1«U1,x~ l ,t,t!50.

Taking into account Eqs.~51! and~52!, the initial and boundary
conditions for«U1(x,t,t) are
156 Õ Vol. 68, MARCH 2001
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ICs: «U1~x,0,0!50, «U1,t~x,0,0!50

BCs: «U1~0,t,t!50, «U1,x~ l ,t,t!50.

Similarly, the macroscopic field«2U2(x,t,t) is determined by
equation of motion~46!, with initial and boundary conditions for
«2U2(x,t,t) constructed so that the global field,u0(x,t,t)
1«U1(x,t,t)1«2U2(x,t,t), should satisfy macroscopic initia
and boundary conditions.

With this in mind, we obtain the initial and boundary condition
for different order equations of motion

ICs: u0~x,0,0!5 f ~x!, u0,t~x,0,0!5q~x!50

Ui~x,0,0!50, Ui ,t~x,0,0!50 ~ i 51,2! (53)

BCs: Ui~0,t,t!50, Ui ,x~ l ,t,t!50 ~ i 50,1,2!. (54)

From the above equations of motion and initial boundary c
ditions, we can observe that

U1~x,t,t![0. (55)

We note that for the multidimensional caseU1 may not vanish.
In generalU1 will vanish provided that the material is macro
scopically isotropic.

3.4 Nonlocal Macroscopic Equations. We define the mean
displacementU(x,t) as

U~x,t !5^u~x,y,t,t!&5u0~x,t,t!1«U1~x,t,t!1«2U2~x,t,t!

1 . . . . (56)

Combing the macroscopic equations of motion~23!, ~39!, and
~46! and neglecting the terms higher thanO(«2), we obtain the
equation of motion for the mean displacement

r0Ü2E0U ,xx2EdU ,xxxx50 (57)

whereÜ5U ;tt is the second-order full-time derivative. The abo
equation is fourth-order in space. It necessitates four bound
conditions to define a well-posed boundary value problem. Ho
ever, for the problem under consideration, there are only
physically meaningful boundary conditions for the mean displa
ment. Equation~57! is often referred to as a ‘‘bad’’ Boussines
equation~cf. @14,15#!.

The ‘‘bad’’ Boussinesq equation can be reformulated
‘‘good’’ Boussinesq equation~@14,15#! by exploiting the approxi-
mation

U ,xx5
r0

E0
Ü1O~«2! (58)

which yields

r0Ü2E0U ,xx2
Edr0

E0
Ü ,xx50. (59)

The above equation is second-order in space, therefore the
physically meaningful boundary conditions are sufficient to defi
a well-posed initial boundary value problem. Similar equations
~57! and~59! arise in fluid dynamics of shallow water theory an
crystal-lattice theory.

4 Solution of Macroscopic Equations
We begin with the zero-order equation of motion~23! and em-

ploy separation of variables to solve for this initial boundary va
problem. Let

u0~x,t,t!5X~x!T~ t,t!. (60)

Substituting the above equation into~23! and dividing by the
productX•T yield
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]2T

]t2 5c2
X9

X
52p2 (61)

wherep is a separation constant and

c5AE0 /r0. (62)

The resulting differential equations and corresponding soluti
are

]2T

]t2 1p2T50, T~ t,t!5S~t!sin~pt!1R~t!cos~pt! (63)

X91
p2

c2 X50, X~x!5h1 sin
px

c
1h2cos

px

c
(64)

where h1 and h2 are integration constants,S(t) and R(t) are
undetermined functions. Substituting the above solutions into
boundary conditions~54! gives

h250, h1 cos
pl

c
50 (65)

The second condition in the above equation leads to

pn5~2n21!
pc

2l
, ~n51,2,3, . . . !. (66)

Due to linearity of the differential equation, the total solutio
can be written as the sum of individual solutions, i.e.,

u0~x,t,t!5(
n51

`

sin
pnx

c
@Sn~t!sin~pnt !1Rn~t!cos~pnt !#.

(67)

Inserting the above solution into the second order macrosc
equation of motion~46! gives

U2,tt2c2U2,xx5(
n51

`
pn

c
sin

pnx

c

3H F Ed

«2r0
S pn

c D 3

Sn~t!12cRn8~t!Gsin~pnt !

1F Ed

«2r0
S pn

c D 3

Rn~t!22cSn8~t!Gcos~pnt !J .

(68)

The forcing terms in~68! are solutions to the associated hom
geneous equation and will generate secular terms. In orde
eliminate the secular terms and avoid unbounded resonanc
U2(x,t,t), the forcing terms are set to zero, i.e.,

Ed

«2r0
S pn

c D 3

Sn~t!12cRn8~t!50,

Ed

«2r0
S pn

c D 3

Rn~t!22cSn8~t!50. (69)

Let

vn5
Ed

2cr0
S pn

c D 3

5
@~2n21!p#3Ed

16r0cl3
(70)

then Eq.~69! can be written as

«2Rn8~t!1vnSn~t!50, «2Sn8~t!2vnRn~t!50. (71)

Differentiating the first equation in~71! and inserting the sec
ond equation into the resulting equation lead to

«4Rn9~t!1vn
2Rn~t!50. (72)
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Likewise, differentiating the second equation in~71! and insert-
ing the first equation into the resulting equation yields

«4Sn9~t!1vn
2Sn~t!50. (73)

Solutions to~72! and ~73! are

Rn~t/«2!5d1 sin~vnt/«2!1d2 cos~vnt/«2!

Sn~t/«2!5d3 sin~vnt/«2!1d4 cos~vnt/«2! (74)

whered1 , d2 , d3 , andd4 are constants of integration. The abov
solutions must satisfy~71!. Inserting~74! into ~71! gives

d152d4 , d25d3 . (75)

Substituting Eqs.~74! and ~75! into ~67! and utilizing initial
conditions yield

d150, d25Bn5
2

l E0

l

f ~x!sin
~2n21!px

2l
dx (76)

and thus the dispersive solution up to the second-order, den
here asud(x,t,t/«2), is given as

ud~x,t,t/«2!5(
n51

`

Bn sin
pnx

c
cosS vn

t

«22pnt D . (77)

For function evaluation we insertt5t/«2 which yields

ud~x,t !5(
n51

`

Bn sin
pnx

c
cosH F Ed

2E0
S pn

c D 2

21GpntJ . (78)

Remark 3: In absence of the slow time scale, the forcing terms
Eq. ~68! cannot be set to zero and hence, the solution toU2(x,t)
will contain secular terms, which grow linearly with time. It ha
been shown in absence of slow time scaling@11# higher-order
solution provides a reasonable approximation provided that
time window is very small.
Remark 4: The solution of the ‘‘good’’ Boussinesq Eq.~59! can
also be found by separation of variables and is given as

U~x,t !5(
n51

`

Bn sin
pnx

c
cosF pnt

A11
Ed

E0
S pn

c
D 2G . (79)

Using the binomial expansion

1

A11
Ed

E0
S pn

c
D 2

512
Ed

2E0
S pn

c
D 2

1
3Ed

2

8E0
2 S pn

c
D 4

2 . . . .

(80)

It can be readily observed that solutions~78! and~79! are iden-
tical up to the second-order accuracy.
Remark 5: If we supplement the ‘‘bad’’ Boussinesq problem~57!
with two boundary conditions

u,xx~0,t !50, U ,xxx~ l ,t !50 (81)

satisfying~78! the solution can be found as

U~x,t !5(
n51

`

Bn sin
pnx

c
cosH FA12

Ed

E0
S pn

c D 2GpntJ . (82)

Even though the binomial expansion of~82! up to the second-
order can be shown to be identical to~78!, the above solution is
considered to be ‘‘bad’’ since the higher order terms in the F
rier series result in a negative term under the square root of
~82! giving rise to physically meaningless solution.
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5 Numerical Results
To assess the accuracy of the proposed model, we constr

reference solution by utilizing a very fine finite element mesh a

Fig. 2 The initial disturbance in displacement with different
half-pulse widths
158 Õ Vol. 68, MARCH 2001
ct a
nd

employ an explicit time integration scheme to solve the sou
problem in a heterogeneous medium. We consider the follow
initial disturbance in the displacement field:

f ~x!5 f 0a0@x2~x02d!#4@x2~x01d!#4$12H@x2~x01d!#%

3@12H~x02d2x!#

where a051/d8 and H(x) is the Heaviside step function
f 0 , x0 and d are the magnitude, the location of the maximu
value and the half width of the initial pulse. Several puls
with f 051m and different half-pulse width,d, are plotted in
Fig. 2.

It can be seen that this pulse is similar in shape to the Gaus
distribution function. Substituting the initial disturbancef (x) into
Eq. ~76! and integrating it analytically, yields
Fig. 3 Displacements at xÄ30 m for the normalized pulse width 2 dÕVÄ14
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2

l Ex02d

x01d

f 0a0@x2~x02d!#4

3@x2~x01d!#4 sin
~2n21!px

2l
dx

5
49152l 4f 0

d8@~2n21!p#9 H @1680l 42180~~2n21!pd l !2

1~~2n21!pd!4#sin
~2n21!px0

2l
sin

~2n21!pd

2l

1@20l ~~2n21!pd!32840~2n21!pd l 3#

3sin
~2n21!px0

2l
cos

~2n21!pd

2l J .

We choose material properties asE15120 GPa,E256 GPa,
r158000 Kg/m3, r253000 Kg/m3, and volume fractiona50.5.
The dimension of the macro-domain and that of the unit cell
set asl 540 m andV50.2 m, respectively. The homogenized m
terial properties are calculated asE0511.43 GPa, r0
Journal of Applied Mechanics
re
-

55500 Kg/m3 andEd51.763107 N. In this case,E1 /E2520 and
the ratio of the impedances of the two material constituentsr
57.30. The initial pulse is centered at the midpoint of the doma
i.e., x0520 m, with the magnitudef 051.0 m.

Figures 3–5 show the evolution of displacements atx530 m
for different values of pulse width:d51.4 m, d50.8 m, andd
50.6 m, respectively. The corresponding ratios between the p
width and the unit cell dimension, 2d/V, are: 14, 8, and 6, respec
tively. In each of the Figs. 3–5, there are three responses in e
graph~a!–~c!, which correspond to the reference solution of t
source heterogeneous problem, the analytical nondispersive
tion u0(x,t) obtained by the classical homogenization and
analytical dispersive solutionud(x,t).

The dispersion phenomenon can be clearly observed from F
3–5. In the low frequency case, depicted in Fig. 3, the pu
almost maintains its initial shape except for some small wiggle
the wavefront. In this case, the zeroth-order homogenization
vides a reasonable approximation to the response of the hete
neous media. However, when the pulse width of the initial dist
bance is comparable to the dimension of the unit cell and
observation time is large, which are the cases shown in Figs. 4
Fig. 4 Displacements at xÄ30 m for the normalized pulse width 2 dÕVÄ8
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5, the wave becomes strongly dispersive and the zeroth-orde
mogenization errs badly. It can be also seen that our disper
model is in good agreement with the reference solution of
heterogeneous medium.

6 Concluding Remarks
Homogenization approach with multiple spatial and tempo

scales have been investigated for a model problem. This wor
motivated by our recent study~@11#! which suggested that in ab
sence of multiple time scaling, higher-order homogenizat
method gives rise to secular terms which grow unbounded w
time. In the present manuscript we have experimented with v
ous multiple time scalings.

We have found that the combination of fast spatial and s
temporal scales successfully captures dispersion effects. This
velopment serves as a model problem from which we will exte
to the general multidimensional cases in our future work. In
general three-dimensional case, the unit cell boundary value p
lem and macroscopic initial boundary value problem subjecte
the secularity constraint will be solved using the finite elem
method.
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Fig. 5 Displacements at xÄ30 m for the normalized pulse
width 2 dÕVÄ6
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Appendix

Solution to the Fast Time-Dependent Unit Cell Problem
Here we give the final results and omit all the details of the so
tion by the Laplace transform.

M1~y,h!5
~12a!~E22E1!~y2aV̂/2!

~12a!E11aE2

1
aV̈

4
S 12

E2

E1
D(

n51

` FW1~l1n!

G1~l1n!
cos

2c1l1nh

aV̂

1
W1~l2n!

G2~l2n!
cos

2c1l2nh

aV̂
G (83)

M2~y,h!5
a~E12E2!@y2~11a!V̂/2#

~12a!E11aE2

1
aV̈

4
S 12

E2

E1
D(

n51

` FW2~l1n!

G1~l1n!
cos

2c1l1nh

aV̂

1
W2~l2n!

G2~l2n!
cos

2c1l2nh

aV̂
G (84)

where

W1~l!5sin~2ml!F cos
2ly

aV̂
2cos

2l~y2aV̂!

aV̂
G1k@cos~2ml!

21#F sin
2ly

aV̂
1sin

2l~y2aV̂!

aV̂
G (85)

W2~l!5@cos~2l!21#F sin
2ml~V̂2y!

~12a!V̂
2sin

2ml~y2aV̂!

~12a!V̂
G

1ksin~2l!F cos
2ml~V̂2y!

~12a!V̂
2cos

2ml~y2aV̂!

~12a!V̂
G
(86)

G1~l!5l2@k sinl cos~ml!1cosl sin~ml!#

3$m@k cosl cos~ml!2sinl sin~ml!#

2@k sinl sin~ml!2cosl cos~ml!#% (87)

G2~l!5l2@sinl cos~ml!1k cosl sin~ml!#

3$m@2k sinl sin~ml!1cosl cos~ml!#

1@k cosl cos~ml!2sinl sin~ml!#% (88)

k5
c1E2

c2E1
5

AE2r2

AE1r1

, l5
isaV̂

2c1
, m5

~12a!c1

ac2
. (89)

l1n andl2n are the roots of

F1~s!5sinl cos~ml!1k cosl sin~ml!,

F2~s!5k sinl cos~ml!1cosl sin~ml!,

respectively.
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Transient Green’s Function
Behavior for a Prestressed Highly
Elastic Half-Space
A plane-strain study of a prestressed isotropic compressible neo-Hookean half-
subjected to shear and normal surface loads is performed. The loads are either stati
and applied for an instant, or travel at an arbitrary constant speed. The transient pro
is viewed as the superposition of infinitesimal deformations upon large, and exact ex
sions for the displacements, within and upon, the half-space are obtained. These, a
associated wave patterns, demonstrate the anisotropy induced by prestress. The
speeds themselves are sensitive to prestress; in particular, Rayleigh waves disa
beyond a critical compressive prestress. A critical tensile prestress also exists, be
which a negative Poisson effect occurs.@DOI: 10.1115/1.1357167#
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Introduction
Wave propagation in prestressed solids has applications

seismology, nondestructive evaluation and material characte
tion ~@1#! and, when the solid is highly elastic, finite deformatio
due to prestress can noticeably affect wave propagation prope
~@2#!. A convenient approach to the study of this situation is
view the deformation triggered by wave-inducing dynamic loa
ing as infinitesimal, and to superpose it upon the existing~static!
deformation due to prestress.

This approach, which allows the use of results by Green
Zerna@3# and Beatty and Usmani@4#, is employed in this article to
examine plane-strain transient Green’s function problems of lo
applied to the surface of a prestressed isotropic compressible
Hookean material. Shear and normal stationary loads that are
plied suddenly, and those that translate at constant speeds ov
surface, are both treated. In the latter case, the speed can b
finite constant value, i.e., can be sub, trans or supersonic.

Basic Equations
Consider an elastic bodyR that is homogeneous and isotrop

relative to an undisturbed reference configurationko . A smooth
motionx5x(X) then takesR to a deformed equilibrium configu
ration k. The Cauchy stressT in k is

T5a011a1B1a2B2, B5FFT, F5
]x

]X
(1)

where (a0 ,a1 ,a2) are scalar-valued response functions of t
principal invariants~I, II , III ! of B, and body forces are absent. A
noted in@4#, experimentally based inequalities~@5#! tend to sup-
port the restrictions

a02II a2<0, a11Ia2.0, a2<0. (2)

An adjacent nonequilibrium deformed configurationk* is ob-
tained by superposing an infinitesimal displacementu, which de-
pends onx and time. This requires an additional~incremental!
Cauchy stressT85T* 2T, whereT* is the Cauchy stress ink* .
To the first order in the displacement gradientH5]u/]x, the

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Fe
ruary 23, 2000; final revision, August 28, 2000. Associate Editor: A. K. Mal. D
cussion on the paper should be addressed to the Editor, Professor Lewis T. Wh
Department of Mechanical Engineering, University of Houston, Houst
TX 77204-4792, and will be accepted until four months after final publication
the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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components ofT8 in the principal reference system, i.e.,B
5diag$l1

2,l2
2,l3

2% wherelk are the principal stretches and

I 5l1
21l2

21l3
2, II 5l1

2l2
21l3

2l1
21l2

2l3
2, III 5l1

2l2
2l3

2,
(3)

can be written as

F T118

T228

T338
G5F l118 12m118 l128 l138

l218 l228 12m228 l238

l318 l328 l338 12m338
G FH11

H22

H33

G
(4a)

T128 5m218 H211m128 H12, T238 5b328 H321m238 H23,

T318 5m138 H131m318 H31. (4b)

In ~4!, (l ik8 ,m ik8 ) are the generalized Lame’ constants defin
by

G i18 5G i1l1
2, G i28 5G i2l2

2, G i38 5G i3l3
2 (5)

wherei 5(1,2,3), the symbolG represents eitherl or m, and

1

2
l ik5

]a0

]lk
2 1l i

2
]a1

]lk
2 1l i

4
]a2

]lk
2 , m ik5mki5a11a2~l i

21lk
2!.

(6)

In k incremental traction boundary conditions on a surface w
outwardly directed normaln can be written in terms of the vecto

t~n!5T8n1Tn~n.Hn!2TH 8n (7)

Finally, becauseko is a homogeneous configuration, the incr
mental balance of linear momentum reduces to~@3#!

div T85rü (8)

wherer is the mass density, (•) denotes~absolute! time differen-
tiation, and a Cartesian basis is understood.

Compressible Neo-Hookean Material
Consider a Hadamard material which is characterized by

response functions

a052AIII
dG~ III !

dIII
, a15

1

AIII
~ao2boI !, a25

bo

AIII
(9)

b-
is-
eeler,
n,
of
001 by ASME Transactions of the ASME
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where (ao ,bo) are material constants such thatbo5ao2m, m is
the shear modulus, andG(1)50. Settingbo50 produces the sub
class of isotropic compressible neo-Hookean materials~@4#!, and a
simple example of this arises when the form

G5mS 1

AIII
21D (10)

is chosen. This reduces~9! to the one-parameter model

a052
m

III
, a15

m

AIII
, a250 (11)

that satisfies the restrictions~2!. For illustration, considerR to be
a cylindrical bar of circular cross-sectional areaAo in ko which is
placed in a deformed equilibrium statek under the uniaxial load
P. If the bar axis is aligned with theX1-direction, then the Cauchy
stresses ink are

T115
P

A
, T225T3350, Tik50 ~ iÞk! (12)

where A is the cross-sectional area ink, and uniform stress is
assumed. BecauseX are the principal directions with stretchesl1
andl25l35lT , Eqs.~1!, ~3!, and~11! combine to give

P

A
5mS l1

3/22
1

l1
D (13a)

lT5
1

l1
1/4. (13b)

BecauseA5lT
2Ao for homogeneous deformation andl151

1e1 , wheree1 is the axial unit extension of the bar,~13a! can be
written as

P

Ao
5mF11e12

1

~11e1!3/2G . (14)

Equation~14! relates a first Piola-Kirchoff stress to unit exte
sion, which is a standard objective of the simple tension test~@6#!.
A schematic of~14! is given in Fig. 1, and the effective Young’
modulus and Poisson’s ratio (Ee,ne) follow from ~13! and the
slope of~14! as

Ee5mF11
3

2~11e1!5/2G , ne52
lT21

l121
5

~11e1!1/421

e1~11e1!1/4 .

(15)

Fig. 1 Isotropic compressible neo-Hookean material in axial
loading
Journal of Applied Mechanics
-

ClearlyEe→m for large extensions, butEe→2.5m when they are
small. This smalle1-behavior corresponds to a Young’s modul
in an isotropic linear elastic solid with Poisson’s ratio 1/4~@6#!
and, indeed,ne in ~15! takes this value whene1→0.

Suddenly Applied Stationary Load Problem
ConsiderR in ko to occupy a half-space defined in terms

fixed Cartesian basis as the regionX2.0. The smooth motion

x15l1X1 , x25l2X2 , x35X3 (16)

then takesR to the plane-strain equilibrium statek defined as

T115s, T2250, l351 (17)

wheres is a known constant stress. The regionR now occupies
the half-spacex2.0 and (xk ,lk) are principal directions and
stretches. For the compressible neo-Hookean model~11!, Eqs.~1!,
~3!, ~16!, and~17! combine to give

l25
1

v1/4, l15vl2 , v5
s

2m
1A11S s

2m D 2

(18a)

T335mS 1

Av
2

1

v D , Tik50 ~ iÞk! (18b)

where 0,v<1(s<0) and v>1(s>0). Equations~16!–~18!
describeR in k.

For any superposed infinitesimal deformationk→k* the incre-
mental stresses are given by~4! where, in view of~5!, ~6!, ~17!,
and ~18!,

l1k8 5mS 2

v
2v D , l2k8 5m2k8 5

m

v
, l3k8 5mS 2

v
2

1

Av
D
(19a)

mk18 5mv, mk38 5
m

Av
. (19b)

Here k5(1,2,3) and it is noted that all the constants in~19! are
positive so long as

0,v,& S s,
m

&
D . (20)

In this instance the superposed infinitesimal deformation p
serves the plane-strain nature ofk by the application of surface
shear and normal line loads aligned parallel to thex3-direction.
Application takes place for an instant at (x1 ,x2)50. This is de-
picted schematically in Fig. 2~a!, where~S, N! are the shear and

Fig. 2 „a… Stationary loads suddenly applied to surface, „b…
surface loads translating on surface
MARCH 2001, Vol. 68 Õ 163
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normal load magnitudes, andd( ) represents the Dirac function
For convenience the variables5v r3(time) has been introduced
where

v r5Am

r
(21)

is the classical~@7#! rotational wave speed. Similarly, the variabl
~x, y! are introduced in place of (x1 ,x2). The boundary conditions
for R in k* alongy50 are

t3
~22!50, t1

~22!5Sd~x!d~s!, t2
~22!5Nd~x!d~s!. (22)

Because the process is plane-strain, the superposed disp
ments are (u1 ,u2), and depend only on~x, y, s!. Thus, in light of
~4!, ~8!, and ~19!, the relevant field equations iny.0 for the
superposed deformation are

F 1

v

]2

]y2 1S 2

v
1v D ]2

]x22
]2

]s2Gu11
2

v

]2u2

]x]y
50 (23a)

2

v

]2u1

]x]y
1S 3

v

]2

]y2 1v
]2

]x22
]2

]s2Du250 (23b)

where the nonzero elements ofT8 obey the constitutive formulas

1

m
T118 5S 2

v
1v D ]u1

]x
1S 2

v
2v D ]u2

]y
,

1

m
T228 5

1

v

]u1

]x
1

3

v

]u2

]y

(24a)

1

m
T338 5S 2

v
2

1

Av
D S ]u1

]x
1

]u2

]y D ,
1

m
T128 5v

]u2

]x
1

1

v

]u1

]y
.

(24b)

Equation~24a! indicates that extensional strain associated w
the x-direction is independent of transverse loading whenv
achieves the critical value defined by~20!. For v exceeding this
value,~24a! implies a negative Poisson effect. Equation~24! as a
set also show that trT8 and trH are not proportional. This indicate
the typical~@3,4#! result that the superposed deformations are g
erned by equations analogous to those for an anisotropic b
even thoughR in ko is isotropic.

The boundary conditions alongy50 for the superposed defor
mation can in view of~7!, ~17!, and~18b! be extracted from~22!
as

T128 2s
]u2

]x
5Sd~x!d~s!, T228 5Nd~x!d~s! (25)

while the initial (s,0) conditions are

S uk ,
]uk

]s D[0 (26)

and k5(1,2). In addition uk should be bounded asAx21y2

→`, y.0 for finite s.0, and should be finite and continuou
everywhere except perhaps at (x,y)50 and certain wavefronts.

Integral Transform Solution
To obtain the superposed displacements, the unilateral@8# and

bilateral @9# Laplace transforms

F̂5E
0

`

Fe2psds, (27a)

F̃5E
2`

`

F̂e2pqxdx (27b)

are introduced, along with their corresponding inverse operat

F5
1

2p i E F̂epsdp, (28a)
164 Õ Vol. 68, MARCH 2001
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F̂5
p

2p i E F̃epqxdq. (28b)

In ~27! the variablep can be taken as real, positive and lar
enough to guarantee existence of~27a!, while q is in general
imaginary. In~28a,b!, the integrations are taken along Bromwic
contours in, respectively, the complexp andq-planes. Application
of ~27! to ~23! in view of ~24!–~26! reduces the superposed d
formation problem to two coupled linear ordinary differenti
equations iny.0 that can readily be solved to yield the doub
transforms

mpũk5Ak~q!e2Avpay1Bk~q!e2Avpby (29)

for y.0. Herek5(1,2) and the (Ak ,Bk) are given by

A1~q!5
q

R S TN2
2qb

Av
SD , B1~q!52

b

R
~AvTS12qaN!

(30a)

A2~q!5
a

R
~2qbS2AvTN!, B2~q!5

q

R S TS1
2qa

Av
ND ,

(30b)

where the definitions

)a5A12q2ca
2, b5A12q2cb

2 (31a)

T512q2S v1
1

v D , To511q2S 1

v
2v D (31b)

R5
4

v
q2ab1T25

3

2
~b2a!FToa1S b22

5

3v
q2DbG (31c)

hold, and the dimensionless constants

cb5Av, ca5Av1
2

v
.cb (32)

define the effective dilatational and rotational wave spe
(v rca ,v rcb), respectively, in thex-direction. To ensure bounded
ness of~29! in y.0 we require that Re(a,b).0 in the q-plane
with, respectively, the branch cuts Im(q)50,uRe(q)u.1/ca and
Im(q)50,uRe(q)u.1/cb . The first expression in~31c! shows thatR
is a form of the classical@7# Rayleigh function. The second ex
pression is less common, but demonstrates in view of~31a! and
~32! that a Rayleigh function arises in a sense because of
existence of two body waves. In either form, it is analytic in t
q-plane with branch cuts Im(q)50,1/ca,uRe(q)u,1/cb , and ex-
hibits the rootsq56(1/co,1/cR), where

ca5Av2
1

v
, (33a)

cR5Av1
1

v S 12
2

)
D . (33b)

It can be shown that it is the last factor in the second form
R in ~31c! that exhibits the roots associated with~33b!, while
those associated with~33a! are roots of both the first factor an
the termTo . For A2/)21,v,& it can be shown that 0,cR

,cb , i.e., v rcR is the Rayleigh speed ink* . For 0,v
,A2/)21, however,cR is imaginary, and so has no meaning
a wave speed. In view of~18!, this implies that Rayleigh waves d
not exist for prestresses

s,22m~)21!A2/)11. (34)

For 0,v,1(s,0) co is also imaginary, while for 1,v
,&(0,s,m/&), we have 0,co,cR . In either case, when
Transactions of the ASME
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q561/co , b5a and ~29! exhibits the numerator factorTo→0.
That is, ~29! itself has no pole associated with~33a!, and that
value plays no role in solution behavior.

Rayleigh waves in prestressed media have been consid
~@10,11#!, and the vanishing of the Rayleigh speed has been in
preted ~@11#! in terms of the instability of the homogeneous
deformed configuration. In what follows, therefore, prestress
restricted by~20! and ~34!, i.e., to the range between Rayleig
wave annihilation and the negative Poisson effect.

General Transform Inversions
Operation on~29! with ~28b! gives the unilateral transform

mûk5
1

2p i E Ak~q!ep~qx2Avay!dq1
1

2p i E Bk~q!ep~qx2Avby!dq

(35)

wherek5(1,2), and the analyticity of both integrands allows th
entire Im(q)-axis serve as the Bromwich contour. For theAk-term,
integrand decay is exponential foruqu→` in the left and right-
hand halves if theq-plane for, respectively,x.0 and x,0.
Cauchy theory can then be used to switch integration to the Ca
iard @12# contour

r a
2q65tx6 iycaAv

3
At22sa

2, sa5
r a

ca
,

r a5Ax21
1

3
vca

2y2 (36)

parameterized by the positive real variablet>sa . The schematic
in Fig. 3~a! for x.0 shows thatq6 define the branches of hyper
bolas with, in light of~32!, asymptote slopes6ycacb /)x and
the interceptq52x/car a which always lies between the origin
and the branch pointsq52(1/ca,1/cb) of ~a, b!. The
Ak-integration can now be written as

1

p
ReE

0

`

a~q1!Ak~q1!
)H~t2sa!

caAt22sa
2

e2ptdt (37)

whereH( ) is the Heaviside function. In view of~27a!, ~37! is
precisely the unilateral transform operation on the integrand,
that its inverse follows by inspection. A similar approach can
used for theBk-term in ~35!, with the result

Fig. 3 „a… Cagniard contour for A k-terms in displacement, „b…
Cagniard contours for B k-terms in displacement
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pmuk5Re@a~qa!Ak~qa!#
)H~s2sa!

caAs22sa
2

1Re@b~qb!Bk~qb!#
H~s2sb!

cbAs22sb
2

1Im@b~qh!Bk~qh!#
H~sb2s!

cbAsb
22s2

H~s2sh!S uxu.
v2y

&
D
(38)

for y.0, wherek5(1,2). In ~38!

qa5q1~s! (39a)

r b
2qb52sx1 iycbAvAs22sb

2, sb5
r b

cb
, r b5Ax21vcb

2y2

(39b)

r b
2qh52sx1ycbAvAsb

22s2, sh5
1

ca
~x1&y!. (39c)

As indicated by the curves in Fig. 3~b!, qb for x.0 defines the
upper half of the branch of a hyperbola in theq-plane with as-
ymptote slopecby/x and interceptq52x/chr b . The intercept
always lies between the origin and the branch pointq521/cb of
b, but for a given location~x, y! may ~broken line in Fig. 3~b!! or
may not~solid line in Fig. 3~b!! lie on the branch cut ofa. In the
former instance, the additional integration path parameterized
qh is required. This explains the two contributions fromBk to
~38!.

In light of ~36!, ~38!, and ~39a!, the Ak-term is dilatational in
nature, and occurs in the outer expanding semi-elliptical regio
Fig. 4, while ~38! and ~39b! show that theBk(qb)-term is a rota-
tional signal, and occurs in the inner expanding semi-ellipti
region in Fig. 4. These shapes are manifestations of the anisot
of the superposed deformation. The disturbances due to
Bk(qh)-term in ~38! are the head~bow! wave contributions, and
occur in the wedge-shaped regions in Fig. 4.

Surface Behavior
Application of Cauchy theory wheny.0 does not involve the

roots of R because they lie on the branch cuts of~a, b!. As y
→0, however, the Cagniard contours in Fig. 3~a, b! collapse onto
these cuts, thereby requiring that they be augmented with se
circular paths of vanishingly small radius that are centered at
root locations associated with~33b!. The results fory50 when
x.0 then follow as

Fig. 4 Wave pattern
MARCH 2001, Vol. 68 Õ 165
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In ~40!, ~b, T! are defined in~31!, but now

q52
s

x
, )a5Aq2ca

221, b5Aq2cb
221 (41a)

D5S T2
2q2

v D S T22
4q2

3v2D . (41b)

The third terms in both~40a,b! represent in view of Fig. 4 head
wave contributions, while the first and second terms are, res
tively, dilatational and rotational in nature. The last terms rep
sent propagating Rayleigh wave spikes. Rayleigh signals are
manifest in the otherS ~shear force!-terms foru1 andN ~normal
force!-terms foru2 as propagating singularities. Such behavior
analogous to that for a linear elastic solid~@7#!.

Translating Surface Load Problem
In this instance, the superposed infinitesimal deformation

triggered by shear and normal surface line loads that are applie
(x1 ,x2)50 but translate over the surface in the positi
x1-direction with a constant speedv. The process is illustrated
schematically in Fig. 2~b!. Other than replacing the boundary co
ditions ~25! with

T128 2s
]u2

]x
5SdS s2

x

cD , T228 5NdS s2
x

cD (42)

the analysis of this problem is essentially the same. In~42! the
dimensionless sliding speed

c5
v
v r

(43)

is introduced. In view of~27a,b! it can be shown that~29! need be
modified only by dividing its right-hand side byp(q11/c). So
long asc,cb , therefore, the inversion process proceeds as
fore, although the factor 1/p implies integration with respect tos.
The result is that fory.0
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1ReE
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22t2 S uxu.
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where it is understood that integrals vanish unless the upper l
exceeds the lower. Herek5(1,2), (Ak ,Bk) are defined by~30!
and ~31! and the integration variablet replacess in ~39!.

The disturbances associated with~44! also occur in the expand
ing regions depicted in Fig. 4. Whenc.cb , however, an inte-
grand pole atq521/c lies between the branch pointq521/cb
and the origin. Depending upon where the location~x, y! places
the intercept of the Cagniard contour in Fig. 3~b!, application of
Cauchy theory may forx.0 now have to include the effect of
residue. Thus, for (c.cb ,cx.cbr b) the term

BkS 2
1

cDHS s2
x

c
2AvyA12

cb
2

c2D (45)

must be added to~44!. Similarly, for (c.ca ,cx.car a) the term

AkS 2
1

cDHS s2
x

c
2Av

3
yA12

ca
2

c2D (46)

must be included. As indicated by Fig. 5~a, b! the contributions
~45! and ~46! represent, respectively, rotational and dilatation
disturbances generated in expanding wedge-like regions when
surface loads translate with trans and supersonic speeds. T
disturbances are discontinuous along their fronts, and their ev
ation is relatively simple because, as seen in~31!, the quantities
~q, a, b, T, R! are purely real.

Fig. 5 „a… Wave pattern for transonic load speed, „b… wave pat-
tern for supersonic load speed
Transactions of the ASME
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Surface Behavior for Translating Loads
As in the stationary load case, the Cagniard contours colla

onto the branch cuts of~a, b! wheny50, and adjustments for the
singularities atq561/cR must be made. In this instance, the r
sults fory50, x.0 are

mu152
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3HS s2
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1

cDHS s2
x
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(47b)

where~41! and ~31! hold, but the integration variablet takes the
place ofs. In contrast to~40! for the stationary load case,~47!
exhibit not only signals due to trans and supersonic speeds
Rayleigh signals that are finite and discontinuous at their fron

Effects of Prestress
Equations~18b!, ~20! and ~32!–~34! lead to the plot in Fig. 6,

which shows that, for a compressive prestress, the dilatati
wave speedv rca in k* increases with stress level, while the r
tational and Rayleigh wave speeds (v rcb ,v rcR) decrease; the
Rayleigh wave ceases to exist, of course, when~34! holds. For the
tensile prestress, all three speeds would tend to the same lim
very high stress levels.

In terms of specific solution behavior, the discontinuities th
travel over the surface at the Rayleigh wave speed in the mov
load case,i.e., the fourth terms in~47a,b!, exhibit an unbounded
resonance when the load speed reaches the Rayleigh valuc
5cR). Behavior near resonance is also of note: For
A2/)21,v,&, the v-dependent terms in the coefficients
the fourth terms are negative. Thus, in view of Fig. 2, the R
leigh discontinuities change sign asv passes through the valu
v rcR . In the case of a classical isotropic linear elastic solid@13#
this type of sign change has implications for the existence
solutions for sliding contact at subsonic speeds.

Indeed, the resonant and near-resonant response are readi
tracted from the classical wave propagation results@7#; the differ-
ence here is that the phenomena depend both on the propert
the compressible neo-Hookean material and the prestress in
material.
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Some Comments
This article considered a transient plane-strain Green’s func

problem of shear and normal line loads applied to the surface
prestressed highly elastic half-space. The loadings were either
tionary and applied for an instant, or translated over the surfac
an arbitrary constant speed. The prestress was aligned with
half-space surface, and could be either tensile or compres
while an isotropic compressible neo-Hookean material served
the half-space.

Following @3#, the problem was viewed as the superposition
infinitesimal deformations triggered by the surface loading up
~perhaps! finite deformations engendered by the prestress. Res
by Beatty and Usmani@4# were used to formulate the problem
and exact solutions obtained for both deformations. In particu
integral transform and standard@12# inversion methods were use
to derive the infinitesimal deformations. Complete expressions
the associated displacements both within and upon the half-s
were given, and the separate contributions due to dilatational
tational and head~bow! waves were identified, and the associat
wave patterns described. In the case of surface loads movin
trans and supersonic speeds, the additional displacement con
tions were also noted.

The results and the accompanying analysis showed that the
tropic compressible neo-Hookean solid behaved for small str
like a linear elastic material with Poisson’s ratio 1/4. The prestr
induced by the typical@3# de factoanisotropic behavior in the
infinitesimal deformation was itself bounded above in tension
the valuem/&, wherem is the shear modulus. Tensions abo
this limit produced a negative Poisson effect in the infinitesim
response. Compressive prestress also exhibited the critical v
22m()21)A2/)11, below which the Rayleigh wave cease
to exist. Both critical values are ofO(m), but are relevant within
the context of highly elastic response. Rayleigh waves in p
stressed media have been discussed in more general terms@10,11#
the latter work, indeed, showed that Rayleigh wave suppres
can be associated with instability of the homogeneous defor
tion. This view is consistent with static analysis@4#, which found
instability criteria in terms of the roots of a polynomial that r
sembles a rationalization of a function of the Rayleigh type.

The unbounded resonance and sign change of surface disp
ments induced by the translation of surface loads at the Rayl
speed that can be found in classical wave propagation@7# results
was also seen in the present study. However, the resonance
now due both to material properties and to prestress levels. S
resonance in the classical case is known to be important in slid
contact@13#. Indeed, for sliding contact with friction at sub, tran
and supersonic speeds on a linear coupled thermoelastic ma
free of prestress, the unilateral Signorini conditions for cont
cannot be satisfied without artifice for sliding speeds between

Fig. 6 Nondimensionalized wave speeds versus prestress
MARCH 2001, Vol. 68 Õ 167
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Rayleigh and rotational wave values@14#. The same result holds
for sliding contact on the prestressed isotropic compressible
Hookean material considered here@15#. Indeed, for compressive
prestresses that exceed the critical value identified here, the S
rini conditions cannot be satisfied for subsonic sliding spee
Subsonic sliding on a solid whose strain energy function redu
for infinitesimal strains to the classical isotropic form has a
been treated@16#, but the prestress deformations considered w
not finite.

A plane-strain situation was treated here, and it is clear@3# that
the effective material constants for the infinitesimal deformatio
are sensitive to the nature of the prestress as well as its leve
to the properties of the highly elastic body. At present, therefo
efforts to study transient response both to surface and buried l
without the motion constraints imposed by plane strain are un
way. Moreover, prestresses which exceed levels critical for R
leigh wave annihilation are under consideration.

In closing, it should be noted that some basic equations u
here,e.g., ~23!, can be extracted from more general work@10,11#.
The present results are intended as an illustration of a partic
case of a highly elastic material in terms of exact and tracta
full-field and surface solutions of the Green’s function type. F
example, the Cagniard functions~39! are similar in form to clas-
sical results@7# for isotropic elasticity.
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Intersonic Crack Propagation—
Part I: The Fundamental Solution
Recent experiments of Rosakis et al. have clearly shown that the crack-tip velocit
exceed the shear wave speed for a crack tip propagating between two weakly bo
identical and isotropic solids under shear-dominated loading. This has motivated re
theoretical and numerical studies on intersonic crack propagation. We have obta
analytically the fundamental solution for mode-II intersonic crack propagation in
paper. This fundamental solution can provide the general solutions for intersonic c
propagation under arbitrarily initial equilibrium fields. We have also developed a co
sive zone model to determine the crack-tip energy release for an intersonic shear c
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1 Introduction
The present study is motivated by recent experiments on in

sonic crack propagation by Rosakis et al.@1# who investigated
shear dominated crack growth along weak planes in a brittle p
ester resin under far-field asymmetrical loading. They obser
crack propagation as fast as the longitudinal wave speed,cl . This
experiment is interesting because it has been widely believed
a brittle crack cannot propagate faster than the Rayleigh w
speed,cR . The origin for this belief stems from the predictions
continuum mechanics with regard to the dynamic elastic soluti
of the near-tip stress fields and energy release rates for va
velocity regimes and different types of external loading. Freu
@2# and Broberg@3# have elegantly summarized the solutions
dynamic crack propagation for all velocity regimes. For a mod
crack, the physically admissible stress singularity and the ene
release rate vanish for all crack velocities in excess of the R
leigh wave speed, which implies that it is impossible for a mod
crack to propagate at a velocity greater than the Rayleigh w
speed. In fact, Washabaugh and Knauss@4# demonstrated that the
velocity of a mode-I crack tip propagating along a fabricated we
plane may asymptotically approach the Rayleigh wave speed.
a mode-II crack, however, the order of stress singularity beco
positive once the crack-tip velocity exceeds the shear wave sp
cs , with a maximum value of 1/2~square-root singularity! at a
special speedA2cs at which the crack stops radiating~@5–7#!.
This singularity may lead to a positive crack-tip energy rele
rate for mode-II intersonic crack propagation once a cohes
view of fracture is adopted~@3,6#!, i.e., the crack tip is viewed no
as a point singularity but as a finite cohesive zone.

Evidence of shear crack propagation in excess of the s
wave speed has also been provided from observations of sha
crustal earthquakes~@8–10#!. Among recent earthquakes whe
super-shear rupture velocity has been reported is the M7.4 e
quake at Kocaeli, Turkey on Aug. 17, 1999~@11#!. The late arrival
of laboratory experiments on intersonic fracture~@1,12#! is due, in
part, to the fact that a crack in elastic homogeneous and isotr
solids always kinks or branches out, deviating from the init
crack plane and having a zigzag crack path, once the crac
velocity exceeds only 0.3;0.4cs ~@2,13,14#!. A wavy crack insta-
bility occurs at low crack velocities and prevents an exploration
the full range of possible velocities. In fact, the only possibility

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ju
20, 2000; final revision, Nov. 9, 2000. Associate Editor: L. T. Wheeler. Discuss
on the paper should be addressed to the Editor, Professor Lewis T. Wheeler, D
ment of Mechanical Engineering, University of Houston, Houston, TX 77204-47
and will be accepted until four months after final publication of the paper itself in
ASME JOURNAL OF APPLIED MECHANICS.
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attaining intersonic crack propagation is to introduce a weak p
~a layer of lower toughness! so that crack growth is confined t
this path~@1,12#!.

There are also analytical and numerical studies on shear in
sonic crack propagation. Freund@5#, Burridge et al.@15#, and Si-
monov @16# investigated various aspects of intersonic cra
growth such as the stability regime as well as stress singularit
crack tip and at the radiating wave fronts. Broberg@17# solved the
problem of self-similar propagation of an intersonic shear cra
symmetrically expanded at constant speed from zero initial len
Yu and Suo@18# used the cohesive model to study the permissi
velocity zones for intersonic crack growth along a bimaterial
terface. Andrews@19# used a slip weakening model to investiga
shear crack growth along a weak interface and found that
shear crack approaching the Rayleigh wave speed induces a
crocrack that moves at speeds exceeding the shear wave s
Similar mechanisms were also reported in the cohesive finite
ment simulations~@20,21#! and atomic simulations~@22#! of inter-
sonic shear fracture. Gao et al.@23# compared the atomic simula
tions with the continuum analysis of intersonic crack propagat
and established that, without any parameter fitting, they ag
very well.

In this paper we obtained analytically a fundamental solut
for intersonic shear crack propagation. A semi-infinite crack in
infinite solid is subjected to a pair of suddenly applied concentr
shear forces on the crack faces. The crack tip starts to propaga
a velocity between the shear and longitudinal wave speeds.
method of analytic continuation~@24#! for subsonic crack growth
is extended for intersonic crack propagation. The analytical
pressions are obtained for the shear stress ahead of the prop
ing crack tip and the sliding displacement on the crack fac
which is useful for the Part II of this study for a suddenly stoppi
intersonic shear crack. A cohesive zone model is also develo
to determine the crack-tip energy release rate in intersonic c
propagation.

2 The Fundamental Solution
An infinite solid containing a semi-infinite crack on the neg

tive x-axis is subjected to plane-strain deformation. The solid
linear elastic and isotropic, with the shear modulusm and Pois-
son’s ration. For time t<0, the solid is stress free and at re
everywhere, and the crack tip is at the origin~0,0! of the station-
ary coordinate system (x,y). The positivex-axis represents the
preexisting weak plane for the crack to propagate. At timet50,
the crack tip begins to move intersonically at a constant velocitv
in the positivex-direction, wherev is between the shear wav
speedcs and longitudinal wave speedcl . As the tip moves away,
a pair of concentrated shear forces~in thex-direction! of constant
magnitudet* ~per unit length in thez-direction! is left at the
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origin ~the initial crack-tip location!. Similar to subsonic crack
growth ~@2#!, this is the fundamental solution for an interson
shear crack subjected to an arbitrary initial equilibrium field.

The displacement potentialsf and c are introduced such tha
the in-plane displacements can be written as~@2#!

ux5
]f

]x
1

]c

]y
, uy5

]f

]y
2

]c

]x
. (1)

The in-plane stress components can be written in terms off andc
as

sxx5mS cl
2

cs
2 ¹2f22

]2f

]y2 12
]2c

]x]yD ,

syy5mS cl
2

cs
2 ¹2f22

]2f

]x2 22
]2c

]x]yD , (2)

sxy5mS 2
]2f

]x]y
1

]2c

]y22
]2c

]x2 D ,

where¹2 is the Laplace operator, the shear and longitudinal w
speedscs5Am/r andcl5A(k11)/(k21)cs , r the mass density
and k5324n for plane-strain deformation. A coordinate syste
(j,y) moving with the crack tip is introduced as

j5x2vt, (3)

wherev is the crack-tip velocity. The equation of motion in th
moving coordinate system becomes~@2#!

a l
2

]2f

]j2 1
]2f

]y2 1
2v

cl
2

]2f

]j]t
2

1

cl
2

]2f

]t2 50,
(4)

2âs
2

]2c

]j2 1
]2c

]y2 1
2v

cs
2

]2c

]j]t
2

1

cs
2

]2c

]t2 50,

where

a l5A12
v2

cl
2, âs5Av2

cs
221. (5)

The coefficient of]2c/]j2 has become negative in interson
crack propagation, leading to shock waves associated with
intersonically moving crack tip.

Only the upper half-plane (y>0) is analyzed due to symmetry
The boundary conditions in the moving coordinate system can
written as

syy~j,y50,t !50,

sxy~j,y50,t !5t1~j,t !2t* d~j1vt !H~ t !H~2j!, (6)

ux~j,y50,t !5u2~j,t !

for 2`,j,`, wheret1 is the unknown shear stress ahead of
moving crack tip~j.0, y50), which can be taken as zero fo
j,0; d andH are the Dirac delta function and the unit step fun
tion, respectively; andu2 is the unknown sliding displacement o
the crack face~j,0, y50), which vanishes forj.0.

The Laplace transform and two-sided Laplace transform
applied with respect to timet and moving coordinatej, respec-
tively, i.e.,

f̂~j,y,s!5E
0

`

f~j,y,t !e2stdt,

(7)

F~z,y,s!5E
2`

`

f̂~j,y,s!e2szjdj.

For the displacement potentialf, the two-sided Laplace transform
exists only in the strip21/(cl2v),Re(z),1/(cl1v), which is
identical with that for subsonic crack propagation~@2#!, where Re
stands for the real part of a complex number. The Laplace tra
170 Õ Vol. 68, MARCH 2001
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form for c is defined in the same way as in~7!, but it converges
only in the strip 0,Re(z),1/(cs1v) because the crack tip propa
gates faster than the shear wave speed. Accordingly, the com
of these two strips, 0,Re(z),1/(cs1v), is the domain within
which the Laplace transform converges.

The governing Eqs.~4! become the ordinary differential equa
tions for F andC after the Laplace transform, and they have t
general solution in the upper half-plane (y>0) as

F5
P~z!

s3 e2a~z!sy, C5
Q~z!

s3 e2b~z!sy, (8)

where the functionsP and Q are to be determined by boundar
conditions, anda andb are given by

a52 ia lAz1
1

cl2v
Az2

1

cl1v
,

(9)

b52âsAz2
1

v2cs
Az2

1

v1cs
.

Here, a has a branch cut on each side of the strip 0,Re(z)
,1/(cs1v), i.e., from21/(cl2v) to 2` and from 1/(cl1v) to
`. The branch cuts forb, however, are both to the right of th
strip, i.e., from 1/(v1cs) and 1/(v2cs) to `, which are different
from that for subsonic crack growth~@24#!. These branch cuts
ensure Re~a!>0 and Re~b!>0 for z in the strip.

The Laplace transform of the boundary conditions~6! gives

Fcl
2

cs
2 ~a21z2!22z2GP12bzQ50,

22azP1~b22z2!Q5
T1~z!

m
1

t*

mv

1

z2
1

v

, (10)

zP2bQ5U2 ,

where

T1~z!5sE
0

`

t̂1~j,s!e2szjdj,

(11)

U2~z!5s2E
2`

0

û2~j,s!e2szjdj

are analytic for Re~z!>0 and Re(z)<1/(cl1v), respectively, on
thez-plane,t̂1(j,s) is the transform of the shear stresst1 ahead
of the moving crack tip with respect to time, andû2(j,s) is the
transformed sliding displacementu2 on the crack face. Elimina-
tion of P andQ from three equations in~10! yields

T11
t*

v

1

z2
1

v

52m
cs

2

v2

R~z!

S z2
1

v D 2

b

U2 , (12)

where

R~z!54abz21F2z22
v2

cs
2 S z2

1

v D 2G2

, (13)

and a and b are given in~9!. The functionR(z) has four roots
~@24#!, namely z51/(v2cR ), 1/(v1cR ), and a double root at
1/v, wherecR is the Rayleigh wave speed. These roots are al
the right of the strip of convergence, 0,Re(z),1/(cs1v). Unlike
subsonic crack growth, the functionR(z) is no longer analytic for
largez in intersonic crack propagation, and has to be decompo
differently from that in subsonic crack growth~@2#!. We define a
new functions by
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s~z!5
1

4ia l âs S z2
1

cl1v

z1
1

cl2v

D 1/2

3
R~z!

S z2
1

v2cR
D S z2

1

v1cR
D S z2

1

v D 2 , (14)

which has no roots on thez-plane, but has branch cut
from 21/(cl2v) to 2`, and from 1/(cl1v), 1/(v1cs ), and
1/(v2cs) to `. For largez,

s;11@~22v2/cs
2!2/~4ia las!#~~z21/~cl1v !!/~z1~1/cl

2v !!!1/2,

and is therefore not analytic in the entire range of intersonic cr
propagation (cs,v,cl) except when the crack-tip velocityv is
& times the shear wave speedcs . In fact, it is well known~@2#!
that only at this particular velocity ofA2cs stresses near an inte
sonic shear crack tip have the conventional square-root sing
ity, and the crack-tip energy release rate remains finite and n
zero.

In order to solveT1 andU2 from ~12!, we decomposes(z) as

s~z!5s1~z!s2~z!, (15)

wheres1 is analytic for Re~z!>0, while s2 is analytic for Re(z)
<1/(cl1v). For any z in the strip 0<Re(z)<1/(cl1v), the
Cauchy’s integral formula gives

log s~z!5
1

2p i R
G

log s~z!

z2z
dz, (16)
k
-

o
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-
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where the closed counterclockwise contour of integrationG is the
boundary of the strip, i.e., the two vertical straight lin
G1(Re(z)50) andG2(Re(z)51/(cl1v)) in the complexz-plane.
For subsonic crack propagation,s(z) is decomposed by taking
log s1(z) and logs2(z) as the integrations on these two straig
lines G1 and G2 , respectively. This standard method, howev
does not work for intersonic crack propagation becauses(z) is no
longer analytic for largez such that the integration on eac
straight line would diverge. In the following, we adopt a differe
method to decomposes(z) for intersonic crack propagation. Th
derivative of~16! with respect toz is

s8~z!

s~z!
5

1

2p i R
G

log s~z!

~z2z!2 dz. (17)

According to the decomposition in~15!, the left-hand side of~17!
can be written ass18 /s11s28 /s2 . Therefore, we may take

s18 ~z!

s1~z!
5

1

2p i EG1

log s~z!

~z2z!2 dz,
s28 ~z!

s2~z!
5

1

2p i EG2

log s~z!

~z2z!2 dz.

(18)

A similar decomposition was used by Noble@25# in the study of
functions that are neither bounded nor single-valued at infin
Based on Cauchy’s theorem, the integration pathG1(Re(z)50) for
s18 /s1 can be augmented to a path on both sides of the branch
between21/(cl2v) and2`. Further integration with respect toz
gives

s1~z!

s1~0!
5expF2

z

p E
1/~cl2v !

`

arctanV1~r !
dr

r ~r 1z!G , (19)

where
V6~r !5

S 2r 22
v2

cs
2 S r 6

1

v D 2D 2

4a l âsr
2Ar 7

1

cl2v
Ar 6

1

cl1v
AUr 6

1

v2cs
UAUr 6

1

v1cs
U

. (20)
As z→1`, s1(z)/s1(0) is on the order ofzq21/2, where

q5
1

p
arctan

4a l âs

S 22
v2

cs
2D 2 (21)

is the order of stress singularity near an intersonic shear crac
~@2#!, and it is always less than 1/2 except at a single crack
velocity v5A2cs . Similarly, the integration pathG2(Re(z)
51/(cl1v)) for s28 /s2 in ~18! can be augmented to both sides
the branch cut between 1/(cl1v) and`. This leads to

s2~z!

s2~0!
5expF2

z

p E
1/~cl1v !

`

3Fp

2
1S p

2
2arctanV2~r ! DH1~r !G dr

r ~r 2z!G , (22)

where the functionV2 is given in ~20!, and H1(r )5H(1/
(v1cs)2r )2H(r 21/(v2cs)). As z→2`, s2(z)/s2(0) is on
the order ofuzu1/22q.

The functions(z) in ~14! can then be decomposed as
tip
tip

f

s~z!5s~0!
s1~z!

s1~0!

s2~z!

s2~0!
5

v2~v22cR
2 !

4cs
4âsS 11

v
cl

D
s1~z!

s1~0!

s2~z!

s2~0!
,

(23)

wheres(0) is evaluated from~14!. Finally, Eq.~12! governing the
unknownsT1 andU2 can be decomposed as

s1~0!

s1~z!

T1

A~cl2v !z11

1F s1~0!

s1~z!

1

A~cl2v !z11
2

s1~0!

s1S 1

v D A
v
clG t*

vz21

5
im

cs

s2~z!

s2~0!

@~v2cR!z21#@~v1cR!z21#U2

A~cl1v !z21A~v2cs!z21A~v1cs!z21

2
s1~0!

s1S 1

v D A
v
cl

t*

vz21
. (24)
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Its left-hand side is analytic to the right~Re~z!.0! of the strip
sincez51/v is a removable singularity, while its right-hand sid
is analytic to the left of the strip (Re(z),1/(cl1v)). Therefore,
~24! defines an entire function. The Laplace transform of
stress (t;r 2q) and displacement (u;r 12q) near an intersonic
shear crack tip (r→0) gives the asymptotic behavior of the tran
formed stress and displacement foruzu→` as T1;zq21 andU2

;zq22. It is then straightforward to show that both sides of~24!
approach zero asuzu→`. Based on the Liouville’s theorem, bot
sides of~24! must vanish for allz. This gives

T15F s1~z!

s1~1/v!
Av

cl
A~cl2v !z1121G t*

vz21
, (25)

U252
ics

m

s1~0!

s1~1/v!
s2~0!

s2~z!

3
A~cl1v !z21A~v2cs!z21A~v1cs!z21

@~v2cR!z21#@~v1cR!z21#
Av

cl

t*

vz21
.

(26)

The functionsP and Q can be obtained by substitutingT1 in
~25! andU2 in ~26! into ~10!, which in turn give solutions for the
transformed displacement potentialsF and C in ~8!. The means
of Cagniard-de Hoop method is then used to invert the dou
transforms forf and c. In the following we focus on the shea
stress ahead of the moving crack tip,t1(j.0,t). Inversion of the
two-sided Laplace transform is considered first,

t̂1~j,s!5
1

2p i Ez02 i`

z01 i`

T1~z!eszjdz, (27)

where z0 is a real number in the strip, i.e., 0,z0,1/(cl1v).
Based on Cauchy’s theorem, the integration path can be
mented to a path on both sides of the branch cut betw
21/(cl2v) and2`, and t̂1 becomes

t̂1~j,s!52
1

p E
1/~cl2v !

1`

Im@T1~2h!#e2shjdh, (28)

where Im stands for the imaginary part of a complex number,
the integrand is understood as the limiting value just above
branch cut. The inverse Laplace transform of~28! with respect to
s can be obtained by observation since the inversion ofe2shj is
simply the Dirac delta functiond(t2jh). In conjunction with the
analytical expression ofT1 in ~25!, the shear stress ahead of th
propagating crack tip is found as

t1~j.0,t !5
4cs

3

pcl
3/2 t*Av

j

s1~0!

s1S 1

v D
s2~0!

s2S 2
t

j D t2

3@~cl1v !t1j#H@~cl2v !t2j#

*
A~cl2v !t2jA~v2cs!t1jA~v1cs!t1j

@~v2cR!t1j#@~v1cR!t1j#~vt1j!3 . (29)

It has the asymptotic form near the crack tip~j→01!

t1~j→01,t !5
4a l âscs

4f ~v !

pAclv
3~v22cR

2 !

t*

vt

s1~0!

s1S 1

v D F ~v22cs
2!t

~cl1v !j Gq

,

(30)

wherea l andâs are defined by~5!, the power of stress singularit
q is given in ~21!, and the functionf is related to the crack-tip
velocity v by

f ~v !5expF E
1/~cl1v !

1/~v1cs! f 0~r !

pg
dr2E

1/~v2cs!

1` f 0~r !

pr
drG . (31)

Here the functionf 0 is given by
172 Õ Vol. 68, MARCH 2001
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f 0~r !5tan21F 4a l âs

f 1~r !2S 22
v2

cs
2D 2

S 22
v2

cs
2D 2

f 1~r !116a l
2âs

2G , (32)

and

f 1~r !5

F2r 22
v2

cs
2 S r 2

1

v D 2G2

r 2AS r 1
1

cl2v D S r 2
1

cl1v DUr 2
1

v2cs
UUr 2

1

v1cs
U

.

(33)

It is observed that the near-tip stress decreases with time v
power of 12q, i.e., t;1/t12q.

The sliding displacement on the crack face,u2(j,0,t), is im-
portant to the study of a suddenly stopping crack in Part II of t
paper. The inversion ofU2 in ~26!, together with the Cagniard-de
Hoop method, gives

u2~j,0,t !5
1

p
PVE

1/~cl1v !

2t/j

Im@U2~h!#dhH@~cl1v !t1j#,

(34)

wherePV stands for the Cauchy principal value integral; the
tegrand is understood as the limiting value just above the bra
cut from 1/(cl1v) to `, and Im@U2(h)# is obtained from~26! as

Im@U2~h!#5
Aclv

cs
2

t*

m

s1~h!

s1S 1

v D ~12vh!A~cl2v !h11
Fn~h!

Fd~h!
,

(35)

where

Fn~h!54h2A~cl2v !h11A~cl1v !h21@~v2cs!h21#

3@~v1cs!h21#

2clcsF2h22
1

cs
2 ~vh21!2G2

3A12~v2cs!hA~v1cs!h21* H@12~v2cs!h#

3H@~v1cs!h21#, (36)

Fd~h!516h4@~cl2v !h11#@~cl1v !h21#@~v2cs!h21#

3@~v1cs!h21#1cl
2cs

2F2h22
1

cs
2 ~vh21!2G4

. (37)

It is noted that the denominatorFd(h) has simple poles at 1
(v2cR) and 1/(v1cR ), as well as a double pole at 1/v.

3 Discussion
The fundamental solution in the previous section can prov

the general solution for an intersonic shear crack under an a
trary initial equilibrium field. This is because that the process
crack propagation is essentially the negation of the equilibri
traction distribution during dynamic crack growth~see @2# for
details!.

The stress singularity around an intersonic shear crack ti
always weaker than the conventional square-root singularity
cept at a single crack-tip velocity ofv5A2cs . Only when the
crack-tip velocity becomes& times the shear wave speed th
square-root singularity is preserved and the crack-tip energy
lease rate remains finite and nonzero. In fact, this is consis
with the first experimental observation on the shear-domina
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intersonic crack propagation~@1#!, in which the crack-tip velocity
was observed to approach a steady-state value ofA2cs . The mo-
lecular dynamics simulation of the shear-dominated interso
crack propagation~@22#! has also shown that the crack-tip veloci
tends to approachA2cs . At this particular crack-tip velocityv
5A2cs , the stress and displacement fields near the propaga
crack tip are

sxx5
11a l

2

a l

KII

A2p
Im@~j1 ia l y!21/2#, syy50,

sxy5
KII

A2p
Re@~j1 ia l y!21/2#, (38)

ux5
1

a l

KII

mA2p
Im@~j1 ia l y!1/2#, uy5

KII

mA2p
Re@~j1 ia l y!1/2#,

(39)

wherea l , defined in~5!, becomesa l5A122cs
2/cl

2; KII is the
crack-tip stress intensity factor forv5A2cs ,

KII ~v5A2cs!5 lim
j→01

t1~j,t !A2pj. (40)

It is clearly observed from~38! that stresses are singular only
the crack tip for this particular crack-tip velocity ofA2cs . This
indicates thatA2cs is the radiation-free crack-tip velocity, i.e
there is no shock wave emanating from the crack tip at
velocity.

From the asymptotic expression~30!, the stress intensity facto
for v5A2cs is found as

KII ~v5A2cs!

5
2cs

3

cl~2cs
22cR

2 !
A12

A2cs

cl

s1~0!

s1S 1

A2cs
D f ~A2cs!K0 ,

(41)

where the functionf is defined in ~31!, and K05KII (v→0)
5t* A2/(p l ) is the equilibrium stress intensity factor for a st
tionary crack subjected to a pair of shear forcest* at the same
distance ofl 5A2cst behind the crack tip. For Poisson’s rat
n51/3, the factor beforeK0 is 0.464, i.e., KII (v5A2cs)
50.464KII (v→0), such that the near-tip shear stress is sligh
less than one half of its counterpart for a stationary crack. T
also indicates that the stress intensity factor reaches its ‘‘ste
state’’ limit (0.464K0) instantaneously.

The crack-tip energy release rate forv5A2cs can be obtained
via the energy flux integral~@2#! and the asymptotic crack-tip field
in ~38! and ~39! as ~@7#!

G~v5A2cs!5
KII

2 ~v5A2cs!

4mA12
2cs

2

cl
2

5
12n2

E

KII
2 ~v5A2cs!

2An~12n!
.

(42)

This relation between the crack-tip energy release rate and
stress intensity factor atv5A2cs is different from its counterpar
for a stationary crack tip (v→0) by the factor 1/2An(12n),
which is 1.06 for Poisson’s ration51/3. Therefore,G(v5A2cs)
50.228G0 , whereG05((12n2)/E)K0

2 is the energy release rat
for a stationary crack tip subjected to a pair of shear forcest* at
the same distance ofl 5A2cst behind the crack tip.

For the crack-tip velocity other thanv5A2cs , the stress singu-
larity around an intersonic shear crack tip is weaker than the c
ventional square-root singularity, which leads to a vanish
crack-tip energy release rate. Broberg@6# has introduced a proces
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zone model of Dugdale-Barenblatt type to remedy the pathol
of zero crack-tip energy release rate, when the crack-tip veloc
are different fromA2cs . This provides an energy absorptio
mechanism near the crack tip. We have used such a mode
shear cohesive process zone, with details of the model given in
Appendix. The shear cohesive zone propagates with the mo
crack tip. The constant shear cohesive strength is denoted bytc .
The energy release rate,G, is evaluated from the energy flux~@2#!
into the cohesive zone. LetG05((12n2)/E)K0

2 denote the crack-
tip energy release rate for a stationary crack tip subjected to a
of shear forcest* at the same distance ofvt behind the crack tip,
andK05t* A2/(pvt) be the corresponding stress intensity fact
The normalized energy release rate,G/G0 , is given by

G

G0
5Fq

cs
4

Aclv
3~v22cR

2 !

s1~0!

s1~1/v!
f ~v !G 1/q

3FA~12âs
2!4116a l

2âs
2

t*

tcvtG
1/q22

*

3
16a l âs

2~a l
21âs

2!

12q

v22cs
2

~cl1v !v
. (43)

At the radiation-free crack-tip velocityv5A2cs , the above ex-
pression degenerates to that in~42!. The normalized energy re
lease rate does not depend on time, indicating the ‘‘steady-sta
limit is reached instantaneously. At other velocities, however,
normalized energy release rate becomes time-dependent. Fig
shows the normalized energy release rate versus the inters
crack-tip velocity for timetcvt/t* 51 and 10, and Poisson’s rati
n51/3. The normalized energy release rate decreases as tim
creases, which means the ‘‘steady-state’’ limit is not reached
stantaneously, and the energy release rate decreases faste
t21 represented inG0 . This does not occur in subsonic crac
growth and is unique for intersonic crack propagation. In fact,
time approaches infinity, the normalized energy release rate
proaches zero in the entire range of intersonic crack propaga
except at the radiation-free velocityv5A2cs .

The length of the cohesive zone,L, is obtained from the re-
quirement to eliminate the crack-tip singularity

Fig. 1 The energy release rate, G, is shown versus the crack-
tip velocity v at time tcvt Õt*Ä1 and 10; G0 is the energy re-
lease rate for a stationary crack tip subjected to a pair of shear
forces t* at the same distance of vt behind the crack tip, tc is
the cohesive strength, c s the shear wave speed, and Poisson’s
ratio nÄ1Õ3
MARCH 2001, Vol. 68 Õ 173
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L5F qA~12âs
2!4116a l

2âs
2

cs
4

Aclv
3~v22cR

2 !

t*

tcvt

s1~0!

s1S 1

v D f ~v !G 1/q

3
v22cs

2

cl1v
t. (44)

Let L05t* 2/(4tc
2vt) denote the corresponding cohesive zo

length for a stationary crack tip subjected a pair of shear forcet*
at the same distance ofvt behind the crack tip. The length o
cohesive zone in~44!, normalized byL0 , is shown in Fig. 2 for
time tcvt/t* 51 and 10, and Poisson’s ration51/3. Similar to
Fig. 1, the normalized cohesive zone length decreases with
creasing time, except at the radiation-free velocityv5A2cs . The
normalized cohesive zone length remains unchanged at thv
5A2cs , because the square-root crack-tip singularity
preserved.

4 Concluding Remarks
We have conducted a fully transient analysis to obtain ana

cally the fundamental solution for intersonic shear crack propa
tion. A semi-infinite crack in an infinite solid is subjected to a p
of suddenly applied concentrated shear forces on the crack fa
The crack tip starts to propagate at a velocity between the s
and longitudinal wave speeds. This fundamental solution can
vide the general solutions for intersonic crack propagation un
arbitrary initial equilibrium fields. There exists a single crack-
velocity, v5A2cs , at which the crack tip has the convention
square-root singularity, wherecs is the shear wave speed. Th
crack-tip stress intensity factor at this crack-tip velocity is sligh
less than one half of its counterpart for a stationary crack.
have also developed a cohesive zone model to determine
crack-tip energy release rate for an intersonic shear crack.
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Fig. 2 The length of cohesive zone, L , is shown versus the
crack-tip velocity v at time tcvt Õt*Ä1 and 10; L 0 is the cohe-
sive zone length for a stationary crack tip subjected to a pair of
shear forces t* at the same distance of vt behind the crack tip,
tc is the cohesive strength, c s the shear wave speed, and Pois-
son’s ratio nÄ1Õ3
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Appendix

Cohesive Zone Model. We develop a cohesive zone model
order to obtain the nonvanishing crack-tip energy release rate
this fundamental solution in intersonic crack propagation. A c
hesive zone is imposed behind the propagating crack tip to el
nate the crack-tip singularity in~30!. The stress field is compose
of two parts that lead to positive and negative shear stresses a
of the crack tip, respectively;~i! the fundamental solution in Sec
tion 2; and~ii ! the cohesive-zone solution, which has a a constant
shear stress traction and vanishing normal stress traction on
crack face:

sxy~j,0,y50!5tcH~j1L !, syy~j,0,y50!50, (45)

wheretc is the shear cohesive strength,L the length of the cohe-
sive zone, andH the unit step function.

Instead of conducting a fully transient analysis as in Sectio
to obtain the exact cohesive-zone solution, we use a steady-
solution to approximate this transient one such that the time
rivative is related to the spatial derivative with respect to the m
ing coordinatej by ]/]t52v]/]j. The resulted cohesive-zon
solution is independent of time, except the cohesive zone lengtL,
which is to be determined by eliminating the time-dependent s
gular crack-tip field in~30!. The energy release rate obtained fro
this approximate solution will be validated against the exact
ergy release rate in~42! at the radiation-free crack-tip velocityv
5A2cs .

The equation of motion~4! becomes

a l
2

]2f

]j2 1
]2f

]y2 50, 2âs
2

]2c

]j2 1
]2c

]y2 50. (46)

Its solution in the upper half-plane can be generally written
~@2#!

f5Re@F~j1 ia l y!#, c5c~j1âsy!, (47)

whereF(z) is an analytic function of the complex variablez, i
5A21, and c depends on a single real variablej1âsy. The
symmetry conditionssyy5u150 ahead of a mode-II crack tip
~j.0, y50) lead to Re@F9(j.0)#50 andc~j.0!50. An analytic
function can then be defined by

u~z!5F9~z! if Im ~z!>0,

52F̄9~z! if Im ~z!<0, (48)

where F̄(z)5F( z̄) is analytic in the lower half plane, andu is
analytic on the entire plane except on the crack face.

The traction boundary condition~45! on the crack face is ex-
pressed in terms ofF andc as

2a l Im F9~j,0!1~12âs
2!c9~j,0!52

tc

m
H~j1L !,

(49)

~12âs
2!ReF9~j,0!12asc9~j,0!50.

Elimination of c9~j,0! and substitution ofu in ~48! into ~49!
yields

@~12âs
2!214ia l âs#u

1~j,0!2@~12âs
2!224ia l âs#

3u2~j,0!54âs

tc

m
H~j1L !H~2j!, (50)

whereu65u(y→06). The above equation constitutes a standa
Riemann-Hilbert problem whose solution is given by

u~z!5
z2q

2p i

4âs

A~12âs
2!4116a l

2âs
2

tc

m E
2L

0 uj8uq

j82z
dj8. (51)

As z approaches the crack face (Im(z)→0), ~51! has the limits
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u6~j,0!5
4âsuju2qe7 iqp

A~12âs
2!4116a l

2âs
2

tc

m

3F 1

2p i
PVE

2L

0 uj8uq

j82j
dj86

1

2
ujuqH~j1L !G ,

(52)

where PV stands for the Cauchy principal value integral. T
stress field in the cohesive-zone solution can be obtained by
stituting the potentials into~2!.

The cohesive-zone solution in~51! and the fundamental solu
tion in ~30! have the same order of stress singularity,r 2q, around
the crack tip. By requiring their net coefficient ofr 2q to vanish so
as to cancel the stress singularity, we have determined the c
sive zone length as in~44!. The net crack-tip energy release rate
obtained from the energy flux into the cohesive zone as~@2#!

G5tcdc5
tc

2L

2p~12q!m

16a l âs
2~11âs

2!

~12âs
2!4116a l

2âs
2 , (53)

where dc5u1(j52L,y→01)2u1(j52L,y→02) is the net
sliding displacement at the end of the cohesive zone, inclusiv
both the fundamental solution and the cohesive zone solut
This, in conjunction with~44!, leads to the net energy release ra
in ~43!. At the radiation-free crack-tip velocityv5A2cs , ~43!
degenerates to the exact crack-tip energy release rate in~42!.
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1 Introduction
The aim of this study is to find some closed-form solutions

the dynamic equation of a beam in which the Young’s modu
and the density both are polynomial functions, with both the
terministic and stochastic inhomogeneities included. The ex
mode shape is searched also as a polynomial function, with a
dant closed-form expression for the natural frequencies. The
sidered case is the beam simply supported at both ends. Fo
bibliography of investigations on vibration and buckling of no
homogeneous beams, one may consult with the papers by E
berger@1#, and Rollot and Elishakoff@2#.

The importance of the found solutions lies in the possibility
their use as benchmark solutions against which the efficac
various approximate methods could be ascertained. Addition
presently there is a considerable literature on so-called stoch
finite element method~SFEM!, that deals with inhomogeneou
structures involving random fields. The latter random functio
can be represented as mean functions superimposed with d
tion functions. Solution of the problem with properly chosen me
functions often constitutes an important part of the analysis~see,
e.g.,@3,4#!. Thus, the closed-form solutions, both in determinis
and stochastic settings possess attractive analytical advan
over approximate solutions where inherent approximations
various natures are needed. For alternative formulations of
dom eigenvalue problem, the reader may consult with paper
Shinozuka and Astill@5# and Zhu and Wu@6#.

2 Formulation of the Problem
The dynamic behavior of a beam is described by the follow

equation:

d2

dx2 FD~x!
d2w~x!

dx2 G2R~x!v2w~x!50 (1)

where D5EI is the flexural stiffness,E5Young’s modulus,
r5density, I 5moment of inertia of the cross section,R(x)
5rA is the inertial coefficient,A5area of the cross section
w(x)5displacement, andv is the natural frequency.

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ma
25, 1998; final revision, Sept. 7, 2000. Associate Editor: J. W. Ju. Discussion o
paper should be addressed to the Editor, Professor Lewis T. Wheeler, Departm
Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and
be accepted until four months after final publication of the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
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In this study, it is assumed that the cross-sectional area is
stant, but bothD and R are specified as polynomial functions
given by

R~j!5(
i 50

m

aij
i (2)

D~j!5(
i 50

n

bij
i (3)

wherej5x/L is a nondimensional axial coordinate.
We assume thatw(j) is also polynomial

w~j!5(
i 50

p

wij
i (4)

wherewi are sought coefficients. In these expressions,m, n, andp
are, respectively, the degree of the polynomials forR~j!, D~j!,
andw(j).

Equation~1! can be rewritten as

d2

dj2 FD~j!
d2w~j!

dj2 G2kL4R~j!w~j!50 (5)

where

k5v2. (6)

As the involved functions are assumed to be polynomial ones,
degrees of each polynomial function must be linked, namely

n1~p22!225m1p (7)

or, simply

n2m54. (8)

We observe that Eq.~8! does not depend on the degreep of the
displacementw(j). We arrive at the seemingly unexpected co
clusion that any polynomial function for the displacement may
used in Eq.~5! if it also satisfies the boundary conditions. Th
fact will be used at a later stage. In view of Eq.~8! the expression
for D~j! can be written as follows:

D~j!5 (
i 50

m14

bij
i . (9)
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3 Boundary Conditions
The case of the simply supported beam is associated with

following boundary conditions:

w~0!50 (10)

D~0!w9~0!50 (11)

w~1!50 (12)

D~1!w9~1!50. (13)

Solution to Eq.~11! can be found with eitherD~0!50 or w9(0)
50. However, Young’s modulus, which is zero on one point, h
no physical sense, thus Eq.~11! is equivalent tow9(0)50. Hence
we postulateb0.0. The same reasoning can be applied to E
~13!. So the displacement has to satisfy the following conditio

w~0!50 (14)

w9~0!50 (15)

w~1!50 (16)

w9~1!50. (17)

Satisfaction of the boundary conditions~14!–~17! requires that
the degree of the displacement polynomial must at least b
Assuming thatw(j) is a fourth-order polynomial

w~j!5w01w1j1w2j21w3j31w4j4. (18)

The satisfaction of the boundary conditions yields

w~j!5w1~j22j31j4!. (19)

4 Expansion of the Differential Equation
By substituting the different expressions ofD~j!, R~j!, w(j) in

Eq. ~5!, we obtain

w1F (
i 52

m14

i ~ i 21!bij
i 22~212j112j2!

1 (
i 50

m14

24bij
i12(

i 51

m14

ibij
i 21~212124j!

2kL4(
i 50

m

aij
i~j22j31j4!G50. (20)

The latter expression can be rewritten as follows:

212 (
i 51

m13

i ~ i 11!bi 11j i112 (
i 52

m14

i ~ i 21!bij
i

124 (
i 50

m14

bij
i224 (

i 50

m13

~ i 11!bi 11j i148 (
i 51

m14

ibij
i

2kL4(
i 51

m11

ai 21j i12kL4(
i 53

m13

ai 23j i2kL4(
i 54

m14

ai 24j i50.

(21)

The Eq.~21! has to be satisfied for anyj. This requirement yields
the following relations:

224~b12b0!50, for i 50 (22)

2kL4a0172~b12b2!50, for i 51 (23)

2kL4a11144~b22b3!50, for i 52 (24)

L4~2ka02ka2!1240~b32b4!50, for i 53 (25)

¯

Journal of Applied Mechanics
the

as

q.
s:

4.

L4~2kai 232kai 242kai 21!112~ i 11!~ i 12!~bi2bi 11!50,

for 4< i<m11 (26)

¯

L4~2kam212kam22!112~m13!~m14!~bm122bm13!50,

for i 5m12 (27)

L4~2kam2kam21!112~m14!~m15!~bm132bm14!50,

for i 5m13 (28)

2kL4am112~m2111m130!bm1450, for i 5m14.
(29)

Note that the Eqs.~22!–~29! are valid only ifm>3. For cases that
satisfy the inequalitym,3, the reader is referred to the Append
A. Note also that the Eqs.~22!–~29! have a recursive form.

The sole unknown in Eqs.~22!–~29! is the natural frequency
coefficientk, yet we observe that we havem15 equations. We
conclude that the parametersbi andai have to satisfy some aux
iliary conditions so that Eqs.~22!–~29! are compatible.

5 Compatibility Conditions
A first compatibility condition is given by the Eq.~22!, leading

to b05b1 . From the other equations, several expressions fork can
be found. Its values determined from Eqs.~22!–~29!, respectively,
are listed below:

k572~b12b2!/L4a0 (30)

k5144~b22b3!/L4a1 (31)

k5240~a222a0!21~b32b4!/L4 (32)

¯

k512~ i 11!~ i 12!~ai 211ai 2422ai 23!21@bi2bi 11#/L4,

for 4< i<m11 (33)

¯

k512~m13!~m14!~am2222am21!21@bm122bm13#/L4

(34)

k512~m14!~m15!~am2122am!21@bm132bm14#/L4

(35)

k512~m2111m130!bm14 /L4am . (36)

To check the compatibility of these expressions, all expressi
for k have to be equal to each other. We consider two sepa
problems:~i! material density coefficientsai are specified; find
coefficients bi so that closed-form solution holds;~ii ! elastic
modulus coefficientsbi are specified; find coefficientsai so that
closed-form solution is obtainable.

6 Specified Inertial Coefficient Function
Let us assume that the functionR~j!, of the inertial coefficient,

and hence allai ( i 50,2 . . .m) are given. Let us observe that
bm14 is specified then the expression given in Eq.~36! is the final
formula for the natural frequency coefficientk. Then Eqs.~30!–
~36! allow an evaluation of remaining parametersbi . Note that
bm14 andam have to have the same sign due to the positivity ok.

From Eq.~35! we get

bm135H F m2111m130

~m14!~m15!G S am21

am
21D11J bm14 . (37)

Equation~34! yields
MARCH 2001, Vol. 68 Õ 177
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178 Õ Vo
ch

is
bm125F S m15

m13D am2222am21

am2122am
11Gbm13

2S m15

m13D am2222am21

am2122am
bm14 . (38)

Equation~33! results in

bi5F S i 13

i 11D ai 212ai 2422ai 23

ai2ai 2322ai 22
11Gbi 11

2S i 13

i 11D ai 212ai 2422ai 23

ai2ai 2322ai 22
bi 12 (39)

wherei belongs to the set$4,5, . . . ,m11%.
From Eq.~32! we obtain

b35F S 3

2D a222a0

a32a022a1
11Gb42S 3

2D a222a0

a32a022a1
b5 . (40)

Eq. ~31! leads to

b25F S 5

3D a1

a222a0
11Gb32S 5

3D a1

a222a0
b4 . (41)

From Eq.~29! we get
Table

l. 68, MARCH 2001
b15S 2
a0

a1
11Db222

a0

a1
b3 . (42)

And finally, Eq. ~22! yields

b05b1 . (43)

Thus, for specified coefficientsa0 , a1 , . . .am and bm14 , Eqs.
~37!–~43! lead to the set of coefficients in elastic modulus su
that the beam possesses mode shape given in Eq.~19!. Note that if
ai5a, then coefficientsbi do not depend on the parametera.

To sum up, if

R~j!5(
i 50

m

aij
i D~j!5 (

i 50

m14

bij
i (44)

wherebi are computed via Eqs.~37!–~43!, the fundamental mode
shape of a beam is

w~j!5w1~j22j31j4! (45)

and the fundamental natural frequency squared reads

v2512~m2111m130!bm14 /amL4. (46)

As we have seen, in order to obtain closed-form solution it
sufficient that~1! all ai coefficients and~2! the coefficientbm14
2
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be specified. Yet, the requirements are not necessary ones. In
one can assume thatai coefficient are given and instead ofbm14
any coefficientsbj ( j Þm14) is specified. If this is the case, the
from Eq. ~33! one expressesbi 11 via bi and k; substitution into
subsequent equations allows us to expressbm12 ,bm13 ,bm14 via
bi ; analogously, substitution ofbi into Eqs. ~30!–~32! yields
sought exact solutions.

In Tables 1 and 2, some sample specified functionD(x) and the
attendant fundamental natural frequency coefficients are gi
The polynomial functionsR(x) were specified as

R~j!5(
i 50

m

j i , R~j!5(
i 50

m

~ i 11!j i , (47)

respectively, in Tables 1 and 2.

7 Specified Flexural Stiffness Function
Consider now the case when the flexural stiffness function

specified, implying that allbi( i 50, . . . .,m14) are given. The
following question arises: Is it possible to determine the mate
density coefficientsai( i 50, . . . .,m), such that equations corre
sponding to Eqs.~22!–~29! are compatible? One immediately ob
serves that there are (m15) Eqs.~22!–~29!, while one has only
m11 unknowns,a0 ,a1 , . . . ,am . In actuality, however, one ha
only m unknowns. In order for the process of determining
coefficient ai to proceed, one of theaj coefficients should be
specified. The most convenient assumption is to fix eithera0 or al
or am , since in these cases only one equation, respectively,
~30! or Eq. ~31! or Eq. ~36! will be sufficient to determine the
sought expression of the natural frequency coefficient. Let us
sume that the coefficienta0 is given thus, to check the compa
ibility of Eqs. ~22!–~29!, four bi coefficients cannot be chose
arbitrarily.

Note that the natural frequency coefficientk has to be positive
thus, the differenceb1-b2 and the coefficienta0 have to have the
same sign. Moreover, as the coefficienta0 is positive, the differ-
enceb1-b2 should be positive. So, forb1.b2 , one substitutes the
value ofk determined from Eq.~30! into Eq. ~31!; this allows to
determine the coefficienta1 so that the frequency coefficientk in
Eq. ~31! is positive, and so on.
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First, Eq.~22! leads to

b05b1 . (48)

From Eq.~31! we get

a152a0

b32b2

b22b1
. (49)

Eq. ~32! yields

a25
5a1~b42b3!16a0~b32b2!

3~b32b2!
. (50)

Eq. ~33!, wherei 54, results in

a35
a0~4b426b512b3!1a1~4b424b3!1a2~3b523b4!

2~b42b3!
.

(51)

From Eq.~33!, where 4< i<m, we obtain

ai5
1

~ i 11!~bi 112bi !
$ai 21~ i 13!~bi 122bi 11!12ai 22~ i 11!

3~bi 112bi !1ai 23@bi 11~ i 15!22bi 12~ i 13!1bi~ i 11!#

1ai 24~ i 13!~bi 122bi 11!%. (52)

Then from Eq.~36! and Eq.~30!, one can find an expression o
bm14 , so that the compatibility of Eqs.~22!–~29! is checked,

bm145
6am~b12b2!

a0~m2111m130!
. (53)

From Eq.~35! and Eq.~36!, a relation forbm13 can be found,

bm13

5
a0bm14~m219m120!16am21~b12b2!112am~b22b1!

a0~m14!~m15!
.

(54)

Finally, Eq. ~34! and Eq.~35! yield to an evaluation ofbm12 ,
g

le term
bm125
a0bm13~m13!~m14!16am22~b12b2!112am21~b22b1!

a0~m13!~m14!
. (55)

To sum up, while specifying the elastic modulus function, onlym11 coefficientsbi can be chosen arbitrarily; the other remainin
four coefficients are connected with the arbitrary ones via Eq.~48! Eqs.~53!–~55!.

Thus, if

R~j!5(
i 50

m

aij
i D~j!5 (

i 50

m14

bij
i , (56)

whereai and four ofbi coefficients are computed via Eqs.~48!–~55!, the fundamental mode shape of a beam is

w~j!5w1~j22j31j4!. (57)

The fundamental natural frequency square reads

v2572~b12b2!/a0L4. (58)

The closed-form solutions could be utilized for comparison with approximate techniques. For example, utilization of the sing
Boobnov-Galerkin method for the case

R~j!5112j13j214j315j4 (59)

D~j!5b8L8S 163

28
1

163

28
j1

79

28
j22

5

28
j32

151

140
j42

47

28
j52

59

28
j62

1

2
j71j8D (60)

yields, with sin~pj! taken as a comparison function, the following expression:

k5
b8L4

22,050S 6,945,7502409,185p41391,612p822,716,875p2117,356p6

10p4219p2115 D (61)
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or numericallyk5216.29697b8L4, which differs from the exact
solutionk5216b8L4 by 0.13 percent.

8 Stochastic Analysis
The preceeding formulation allows one to perform a stocha

analysis to account for the possible randomness in the mat
density and elastic modulus.

8.1 Probabilistically Specified Inertial Coefficient Func-
tion. Assume that the coefficientsai form a random vector with
a joint probability density f A(a1 ,a2 , . . . ,am), where AT

5(A1 ,A2 , . . . ,Am) and capital letters denote a random variab
Ai whose possible values are denoted by the lowercase not
ai . As Eq.~36! suggests the natural frequency, squaredV2 is also
a random variable denoted by

V25a2Bm14 /Am

a2512~m2111m130!, (62)

where the coefficientBm14 constitutes either a deterministic or
random variable. Several cases allow closed-form evaluatio
the reliability r, defined in the present circumstances as the pr
ability that the natural frequency squaredV2 does not exceed a
pre-selected deterministic valuev0

2,

r 5Prob~V2<v0
2!5Prob~a2Bm14<v0

2Am!. (63)

Let Bm14[B be an exponentially distributed random variab
with density

f B~b!5
1

E~B!
expF2

b

E~B!G , b>0 (64)

and zero otherwise,E(B) being the mean value ofB. Likewise,
the coefficientAm[A has an exponential density

f A~a!5
1

E~A!
expF2

a

E~A!G , a>0 (65)

and vanishes ifa,0, with E(A) indicating the mean value ofA.
SinceA is exponentially distributed the random variablev0

2A is
also exponentially distributed with meanv0

2E(A). Likewisea2B
is an exponential random variable with meana2E(B). The reli-
ability is obtained as

r 5
v0

2E~A!

v0
2E~A!1a2E~B!

. (66)

It is remarkable that although all coefficientsAj ( j 51, . . .m) are
random, the probabilistic characterization of only a single coe
cientAm turns out to be needed, in addition to that ofBm14 for the
reliability evaluation.

8.2 Specified Flexural Stiffness Function. Assume now
thatm11 coefficientsbi form a random vector with a joint prob
ability density f B(b1 , . . . .,bm11). The remaining four coeffi-
cientsb0 , bm12 , bm13 , bm14 are related with the above coeffi
cients via Eqs.~48!, ~53!–~55!. Due to the randomness o
coefficientsB1 , . . . .,Bm11 , we conclude, that the natural fre
quency squared is itself a random variable

V25s2~B12B2! (67)

wheres2 is a coefficient

s2572/L4a0 . (68)

The coefficienta0 in Eq. ~68! can be treated either as a determ
istic or as a random variable. For the sake of illustration, a p
ticular case will be considered hereinafter, namely, whena0 is a
deterministic variable. The mean natural frequency squared eq

E@V2#5s2@E~B1!2E~B2!# (69)
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whereas its variance reads

Var@V2#5s4@Var~B1!1Var~B2!#. (70)

As in Eq. ~63!, reliability is defined as a probability that the natu
ral frequency squaredV2 does not exceed a pre-selected val
v0

2. Once the joint probability density of the coefficientsb1 , b2 ,
a0 are specified, the reliability functionr can be derived directly.
The reliability is cast as

r 5Prob@s2~B12B2!,v0
2#. (71)

A new random variable is introduced

Z5s2~B12B2!2v0
2. (72)

The reliability is re-written as

r 5Prob~Z,0!

5E
2`

`

db2F E
2`

b21v0
2/s2

f B2B1
~b2 ,b1!db12E

2`

b2

f B2B1
~b2 ,b1!db1G .

(73)

Let B1 and B2 be independent random variables, Eq.~73! be-
comes

r 5E
2`

`

f B2
~b2!FFB1

S b21
v0

2

s2D 2FB1
~b2!Gdb2 (74)

FB1
S b21

v0
2

s2D 5E
2`

b21v0
2/s2

f B1
~b1!db1

FB1
~b2!5E

2`

b2

f B1
~b1!db1 . (75)

Let B1 be an uniformly distributed random variable with densi

f B1
~b1!5~b2a!21, if b1P@a,b# (76)

and zero otherwise; likewise, the coefficientB2 has an uniform
density

f B2
~b2!5~d2g!21, if b2P@g,d#. (77)

Let us assume thata.d. Thus, the positivity ofV2 is always
checked sinceB1.B2 . We first calculate the expressions in E
~75!

FB1
S b21

v0
2

s2D 55
0, if b21

v0
2

s2 <a

b22S a2
v0

2

s2D
b2a

,
if a,b21

v0
2

s2,b

1, if b21
v0

2

s2 >b

(78)

FB1
~b2!50

From Eq.~74! it follows that for the reliability evaluation we
need to find a region in which bothf B2

andFB1
are nonzero. As

Eq. ~77! suggests,f B2
is nonzero ifg<b2<d. The functionFB1

differs from both zero and unity ifa2v0
2/s2,b2,b2v0

2/s2;
FB1

equals unity ifb2.b2v0
2/s2. Thus, in order for the produc

f B2
FB1

to be nonzero it is necessary and sufficient thatb2 belongs
to the two following intervals:

I 15@g,d#, I 25@a2v0
2/s2,`#. (79)

It is natural to inquire when these two intervals have no inters
tion. This takes place when the lower end of intervalI 2 exceeds
Transactions of the ASME
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Fig. 1 Probability density functions of variables B 1 and B 2 , and the probabil-
ity distribution function FB1 for v0

2Ïs2
„aÀd…, leading to zero reliability
s

icted
als

-

the upper end of intervalI 1 , i.e., whena2v0
2/s2>d, or in terms

of v0
2, whenv0

2<s2(a2d) ~see Fig. 1!. In these circumstance
the integrand in Eq.~69!, and hence the reliabilityr both vanish
identically.

Assume now that the lower end of the intervalI 2 belongs to the
interval I 1 , i.e., g<a2v0

2/s2<d and, moreover,b2v0
2/s2>d

~Fig. 2!. This implies that s2(a2d),v0
2<s2(b2d). The

sought region forb2 is the interval@a2v0
2/s2,d#. The reliability

is obtained as

r 5E
a2v0

2/s2

d b22S a2
v0

2

s2D
~d2g!~b2a!

db25
@s2~d2a!1v0

2#2

2s4~d2g!~b2a!
. (80)

Consider now the following case:a2v0
2/s2>g and g<b

2v0
2/s2<d ~Fig. 3! implying s2(a2g),v0

2<s2(b2g). The
b2 region is the interval@g,d#. But to evaluate the reliability, this
region has to be split into the union of two regions@g,b
2v0

2/s2#, @b2v0
2/s2,d# since functionFB1

(b21v0
2/s2) takes

value of unity atb25b2v0
2/s2. Hence the reliability reads
hanics
r 5E
r

b2v0
2/s2

b22S a2
v0

2

s2D
~d2g!~b2a!

db21E
b2v0

2/s2

d 1

d2g
db2

5
~s2b2v0

2!12s4d~a2b!1s4g~s2g22as212v0
2!

2s4~d2g!~a2b!
.

(81)

We consider now the caseb2v0
2/s2<g ~Fig. 4!, meaning

s2(b2g),v0
2. The integration domain is the interval@g,d#

r 5E
r

d

1
1

d2g
db251. (82)

There are two intermediate situations between the ones dep
in the Figs. 2 and 3, depending on the lengths of the interv
b2a and d2g. If the lengthb2a of b1 interval is smaller than
the lengthg2d of b2 interval, then two quantities,a2v0

2/s2 and
b2v0

2/s2 belong to theb2 interval as shown in Fig. 5. The reli
ability reads
Fig. 2 Probability density functions of variables B 1 and B 2 , and the probabil-
ity distribution function FB1 for bÀv0

2Õs2Ðd; reliability is given by expression
„80…

Fig. 3 Probability density functions of variables B 1 and B 2 , and the probabil-
ity distribution function FB1 for aÀv0

2Õs2Ðg and gÏbÀv0
2Õs2Ïd; reliability is

given in Eq. „81…

Fig. 4 Probability density functions of variables B 1 and B 2 , and the probabil-
ity distribution function FB1 for bÀv0

2Õs2Ïg; leading to unity reliability
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Fig. 5 Case when length bÀa of B 1 interval is smaller than the length of B 2
interval; reliability is given in Eq. „83…
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r 5E
a2v0

2/s2

b2v0
2/s2

b22S a2
v0

2

s2D
~d2g!~b2a!

db21E
b2v0

2/s2

d 1

d2g
db2

5
s2~2d2a2b!12v0

2

2s2~d2g!
. (83)

If, however, the lengthb2a of b1 interval is bigger than the
lengthg2d of b2 interval, the sought region is illustrated in Fig
6, and the reliability is expressed as follows:

r 5E
r

d b22S a2
v0

2

s2D
~d2g!~b2a!

db25
d22g2

2~d2g!~b2a!
1

v0
22s2a

s2~b2a!
.

(84)

The coefficients of variationsc1 and c2 of random variablesB1
andB2 , respectively,

c15
AVar~B1!

E~B1!
, c25

AVar~B2!

E~B2!
(85)

are chosen to be equal toc15c25c. This implies that for a speci-
fied coefficient of variationc, the upper bounds of the interval ar
related to the lower bounds, as follows:

b5a
11)c

12)c
, d5g

11)c

12)c
. (86)

a is fixed at 14,g is fixed at 1. For the coefficient of variation 0.3
the unity reliability is manifested fory>43.286. Values associ
ated with transition to the unity reliability for the coefficients
variation of 0.4 and 0.5, are, respectively,y>76.151 andy
>193.994.

It should be remarked that the transitional values ofy from
nonunity to unity reliability can be predicted, for the uniform
distributedB1 and B2 , without resort to the reliability calcula-
tions. As the natural frequency squared is proportional to the
ference ofB1 andB2 in Eq. ~67!, the largest value of the natura
frequency is obtained whenB1 takes on the value of the uppe
bound of the interval,b whereasB2 takes on the value of the
lower bound of the intervalg. Thus, if the maximum natural fre
quency squaredvmax

2 5s2(b2g) is smaller thany5v0
2, then the

inequality in Eq.~71! is satisfied automatically; hence the reliab
2001
.

e

,

f

y

if-
l
r

l-

ity is identically unity. Likewise, the minimum natural frequenc
squaredvmin

2 5s2(a2d). If this value exceedsy5v0
2, then obvi-

ously for any pairs of values in intervalsB1 andB2 , the inequality
~71! will be violated, with resulting vanishing reliability.

On the other hand for exponentially distributed variables, un
reliability is never achieved, as Eq.~66! suggests.

9 Nature of Imposed Restrictions
In this paper, in order to obtain the closed-form solutions

natural frequencies deterministically and/or stochastically in
mogeneous simply supported beam, the flexural stiffness and
inertial coefficient were assumed to be polynomial functio
whose powers differ by four. One should stress that thea and b
coefficients in Eqs.~2! and ~3! cannot be specified independent
in order for a closed-form solution to exist. It is quite interesti
to comment on the physical meaning of this restriction. Doe
signify thata andb coefficients and therefore the inertial coeffi
cient and flexural stiffness must depend on each other? To rep
this question consider a classical case of the closed-form solu
reported for nonlinear stochastic dynamics. Nigam@7# studies the
following set of equations:

Ÿj1b j Ẏj1]V/]Yj5Qj~ t !, j 51,2, . . . ,n (87)

where Yj5generalized forces,b j5damping coefficients,V
5potential function,Qj (t)5generalized forces,n5number of
degree-of-freedom. Then the Fokker-Planck equation is c
structed that is not reproduced here. Nigam@7# notes

‘‘Assume that

b j /F j5g for every j , (88)

and define

H5
1

2 (
j 51

n

zj 1n
2 1V~z1 ,z2 , . . . ,zn!, (89)

then the solution can be expressed as

p~z1 ,z2 , . . . ,zn11 , . . . ,z2n!5C exp@2~g/p!H# ’ ’ (90)

wherep is the probability density function andF j is the spectral
density ofQj (t). As is seen the closed-form solution~90! is ob-
tainable when the ratios between theinner characteristics—
damping coefficients of the system on one hand and the spe
densitiesF j of externalexcitation on the other, satisfy the cond
Fig. 6 Case when length bÀa of B 1 interval is bigger than the length of B 2
interval; reliability is given in Eq. „84…
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tion given in Eq.~88!. This indicates that when these character
tics have a common numerical parameter then the closed-f
solution is derivable. The condition~88! is necessary for the so
lution to be given by Eq.~90! which was the first derived by
Ariaratnam@8# for systems with two-degrees-of-freedom and w
extended to multi-degree-of-freedom systems by Caughey@9#. For
other closed-form solutions of this and other kinds, the reader m
consult for example, with works by Dimentberg@10#, Soize@11#,
Scheurkogel and Elishakoff@12#, and others.

One should stress that the importance of the derived clo
form solution is not diminished by the fact that certain conditio
must be met. The appearance of conditions is natural too. Ind
it can be expected that the solution of theinverseproblem would
depend upon the part or entire given data. Thus, if the inhomo
neous beam has a polynomial inertial coefficient with given co
ficients, it must be no surprise that the sought flexural stiffnes
the beam possesses the pre-selected mode shape, that is d
related to the specified inertial coefficients, in order to derive
closed-form solutions.

The following question arises: Is there any resemblance in
previous literature to the type of thinking adopted in this pap
The connection with the previous work was found via Sai
Venant’ssemi-inversemethod. As Timoshenko@13# writes:

‘‘In 1853, Saint-Venant presented his epochmaking mem
on torsion to the French Academy. The committee, co
posed of Cauchy, Poncelet, Piobert, and Lame´, were very
impressed by the work and recommended its publicat
. . . In the introduction Saint-Venant states that the stresse
any point of an elastic body can be readily calculated if
functions representing the componentsu, v, and w of the
displacements are known . . . Saint-Venant then proposes th
semi-inverse methodby which he assumes only some fe
tures of the displacements and the forces and determine
remaining features of those quantities so as he ask by al
equations of elasticity. He remarks that an engineer, gui
by the approximate solution of the elementary strength
materials, can obtain rigorous solutions of practical imp
tance in this way.’’

Indeed, Saint-Venant in 1853 postulated the prior knowledg
the two displacement functionsu5uzy and v5uzx, and then
determined the functionw5uw(x,y) wherew(x,y) is some func-
tion of x and y determined from basic equations. In the pres
paper we essentially utilized a semi-inverse method: We assu
the knowledge of the mode shape and derived the stiffness f
the basic equations. It appears that the clarifying comments in
section further enhance the usefulness of this study.

10 Conclusion
The described class of deterministic and stochastic solut

contains infinite number of closed-form solutions. Indeed, the
greem of polynomial in the expression of the inertial coeficient
Eq. ~44! can be chosen arbitrarily. Likewise, the coefficientsai
can be prescribed at will subject to a condition of positivity
both R~j! andD~j!.

It should be noted that there is a connection between the pre
work with the subject of ‘‘inverse problems’’ of vibration@14,15#.
Indeed, whereas mathematical ‘‘direct problems’’ consist of fin
ing solutions to equations with knowninput parameters, math
ematical ‘‘inverse problem’’ deals with the reconstruction of t
parameters of the governing equations when theoutputquantities
are known. According to Gladwell@15#, ‘‘inverse problems are
concerned with the construction of a model of a given type; e
a mass-spring system, a string, etc; which has given eigenva
and/or eigenvectors or eigenfunctions; i.e., givenspectraldata. In
general, if some such spectral data is given, there can be no
tem, a unique system, or many systems, having these propert
It is remarkable as the present study demonstrates, that there
infinite beams, corresponding tom50,1,2, . . . , that possess the
fundamental mode given in Eq.~19!.
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The natural question arises:Is it possible to formulate the prob
lem so as to obtain a unique solution? The reply to this question is
affirmative. Indeed, one can pre-select not only the fundame
mode shape, but also the fundamental natural frequency den
by v1 . Then the Eq.~46! yields the coefficientbm14 that accom-
plishes this goal

bm145v1
2amL4/12~m2111m130!. (91)

The polynomial expressions have been used prior to this st
in deterministic analyses; yet, to the best of authors’ knowled
this is the first collection of closed-form results in either determ
istic or probabilistic setting for the natural frequencies and as
ciated reliabilities of inhomogeneous beams.

It is also notable that whereas in usual finite element metho
stochastic setting, only small coefficients of variation can be
lowed, the present formulation is not bound to small coefficie
of variation. Therefore, the deterministic and probabilistic clos
form solutions that were uncovered in this study can be utilized
benchmark solutions.
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Appendix A

Case 1:mÄ0. In this subcase, the expressions ofR~j! and
D~j! read~A1!

R~j!5a0 , D~j!5(
i 50

4

bij
i . (A1)

By substituting the latter expressions in Eq.~5!, we obtain~A2!

212 (
i 51

3

i ~ i 11!bi 11j i112 (
i 52

4

i ~ i 21!bij
i

124 (
i 50

4

bij
i224 (

i 50

3

i ~ i 11!bi 11j i

148 (
i 51

4

ibij
i2kL4a0~j22j31j4!50. (A2)

The Eq.~A2! has to be satisfied for anyj. This requirement yields
~A3!–~A7!

224b1124b050 (A3)

272b2172b12ka050 (A4)

2144b31144b250 (A5)

2240b41240b312kL4a050 (A6)

360b42kL4a050. (A7)

To satisfy the compatibility equations,bi , wherei 5$0,1,2,3%, has
to be

b153b4 (A8)

b053b4 (A9)

b3522b4 (A10)

b2522b4 . (A11)

To sum up, if conditions~A1! are satisfied, wherebi are given by
Eqs. ~A8!–~A11!, then the fundamental mode shape is expres
by Eq.~44!, where the fundamental natural frequency reads~A12!
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v25360b4 /a0L4. (A12)

Case 2:mÄ1. In this subcase, the expressions ofE(j) and
r~j! read, respectively~A13!,

R~j!5a01a1j, D~j!5(
i 50

5

bij
i . (A13)

By substituting the latter expressions in Eq.~5!, we obtain

212 (
i 51

4

i ~ i 11!bi 11j i112 (
i 52

5

i ~ i 21!bij
i

124 (
i 50

5

bij
i224 (

i 50

4

~ i 11!bi 11j i

148 (
i 51

5

ibij
i2kL4a0~j22j31j4!

2kL4a1j~j22j31j4!50. (A14)

The Eq. ~A14! has to be satisfied for anyj. This requirement
yields ~A15!–~A20!

224bi124b050 (A15)

272b2172b12kL4a050 (A16)

2144b31144b22kL4a150 (A17)

2240b41240b312kL4a050 (A18)

2360b51360b412kL4a12kL4a050 (A19)

2504b51kL4a050. (A20)

To satisfy the compatibility equations,bi , i 5$0,1,2,3,4%, has to
be

b452
9a127a0

5a1
b5 (A21)

b352
9a1114a0

5a1
b5 (A22)

b25
17a1128a0

10a1
b5 (A23)

b15
17a1142a0

10a1
b5 (A24)

b05
17a1142a0

10a1
b5 (A25)

To sum up, if conditions~A13! are satisfied, wherebi are given by
Eqs.~A21!–~A25!, then the fundamental mode shape is expres
by Eq.~45!, where the fundamental natural frequency reads~A26!

v25504b5 /a1L4. (A26)

Case 3:mÄ2. In this subcase, the expressions ofR~j! and
D~j! reads~A27!

R~j!5a01a1j1a2j2, D~j!5(
i 50

6

bij
i . (A27)

By substituting the latter expressions in Eq.~5!, we obtain~A28!
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212 (
i 51

5

i ~ i 11!bi 11j i112 (
i 52

6

i ~ i 21!bij
i

124 (
i 50

6

bij
i224 (

i 50

5

~ i 11!bi 11j i148(
i 51

6

ibij
i

2kL4~a01a1j1a2j2!~j22j31j4!50. (A28)

The Eq. ~A14! has to be satisfied for anyj. This requirement
yields ~A29!–~A35!

224b1124b050 (A29)

272b2172b12kL4a050 (A30)

2144b31144b22kL4a150 (A31)

2240b41240b312kL4a02kL4a250 (A32)

2360b51360b412kL4a12kL4a050 (A33)

2504b61504b512kL4a22kL4a150 (A34)

672b62kL4a250. (A35)

To satisfy the compatibility equations,bi , i 5$0,1,2,3,4,5% has to
be

b552
5a224a1

3a2
b6 (A36)

b452
25a2136a1228a0

15a2
b6 (A37)

b35
17a2236a1256a0

15a2
b6 (A38)

b25
17a2134a1256a0

15a2
b6 (A39)

b15
17a2236a1184a0

15a2
b6 (A40)

b05
17a2236a1184a0

15a2
b6 . (A41)

To sum up, if conditions~A27! are satisfied, wherebi are given by
Eqs.~A36!–~A41!, then the fundamental mode shape is expres
by Eq. ~45!, where the fundamental natural frequency reads

v25672b6 /a2L4. (A42)
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Exact Solutions for Out-of-Plane
Vibration of Curved Nonuniform
Beams
The governing differential equations for the out-of-plane vibrations of curved nonuni
beams of constant radius are derived. Two physical parameters are introduced to sim
the analysis, and the explicit relations between the torsional displacement, its deriv
and the flexural displacement are derived. With these explicit relations, the two cou
governing characteristic differential equations can be decoupled and reduced to
sixth-order ordinary differential equation with variable coefficients in the out-of-pla
flexural displacement. It is shown that if the material and geometric properties of
beam are in arbitrary polynomial forms, then the exact solutions for the out-of-p
vibrations of the beam can be obtained. The derived explicit relations can also be us
reduce the difficulty in experimental measurement. Finally, two limiting cases are
sidered and the influence of taper ratio, center angle, and arc length on the first
natural frequencies of the beams are illustrated.@DOI: 10.1115/1.1346679#
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1 Introduction
Curved beam structures have been used in many civil, mech

cal, and aerospace engineering applications such as spring de
curved wires in missile-guidance floated gyroscopes, cur
girder bridges, brake shoes within drum brakes, tire dynam
stiffeners in aircraft structures, and turbomachinery blades. It
also be used as a simplified model of a shell structure. Resear
this area can be traced back to the 19th century~@1,2#!. An inter-
esting review can be found in the papers by Markus and Na
@3#, Laura and Maurizi@4#, Chidamparam and Leissa@5#, and
Auciello and De Rosa@6#.

In general, the out-of-plane and the in-plane vibrations
curved beams are coupled. However, based on the Bernoulli-E
hypothesis, if the cross section of the curved beam is uniform
doubly symmetric, then the out-of-plane and the in-plane vib
tions are independent~@7#!.

Out-of-plane vibrations of curved beams have been studied
many investigators~@5#!. The associated governing differenti
equations are two coupled differential equations in terms of
out-of-plane flexural displacement and the torsional displacem
It is known that if the beam is uniform, then the coefficients of t
differential equations are constants. After some simple arithm
operations, the two coupled differential equations can be redu
to a simple sixth-order ordinary differential equation with const
coefficients in the out-of-plane flexural displacement~@2,7#!.
Hence the problem can be solved by different analytical meth
and the exact solutions can be obtained~@1,2,7,8#!. However, it is
not the case for the nonuniform beams.

Due to the complexity in the coefficients of the governing d
ferential equations, the two coupled differential equations ne
have been reduced into one sixth-order ordinary differential eq
tion. Exact solutions for the curved nonuniform beam problem
only found in the work by Suzuki, Kosawada, and Takahashi@9#,
who gave an exact series solution to the beams with the s
boundary conditions at both ends. Nevertheless, their method

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, O
20, 1999; final revision, May 16, 2000. Associate Editor: N. C. Perkins. Discus
on the paper should be addressed to the Editor, Professor Lewis T. Wheeler, D
ment of Mechanical Engineering, University of Houston, Houston, TX 77204-47
and will be accepted until four months after final publication of the paper itself in
ASME JOURNAL OF APPLIED MECHANICS.
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difficulty in handing the problems with other kinds of bounda
conditions. Hence, curved nonuniform beam problems have b
studied mainly by approximate methods such as the Rayleigh-
method~@10#!, the lumped mass approach~@11#!, the transfer ma-
trix method ~@12#!, the finite element method, and the discre
Green function method~@13#!.

In this paper, the governing differential equations for the o
of-plane vibrations of a curved nonuniform beam of constant
dius are derived via Hamilton’s principle. By introducing tw
physical parameters, the analysis is simplified and it is found
the torsional displacement and its derivative can be explicitly
pressed in terms of the flexural displacement. With these exp
relations, the two coupled governing characteristic differen
equations are decoupled and reduced to one sixth-order ordi
differential equation with variable coefficients in the out-of-pla
flexural displacement. It can be shown that if the material a
geometric properties of the beam are in arbitrary polynom
forms, exact solutions for the out-of-plane vibrations of nonu
form curved beams can be obtained.

It is worth mentioning that by employing the explicit relation
one only has to measure one variable instead of measuring
variables simultaneously in the experimental study of the cur
beam. Hence, it greatly reduces the difficulty in experimen
measurement.

When the radius of a curved beam becomes infinite, the cur
beam reduces to be a straight beam. Consequently, by settin
radius to be infinite, the sixth-order differential equation in term
of the flexural displacement should reduce to a fourth-order
ferential equation. However, it is not possible to perform this li
iting process from the reduced sixth-order ordinary differen
equation for the beam~@2,7#! and the limiting study had neve
been successfully explored before. In this paper, by employing
explicit relation, the limiting study for a curved nonuniform bea
is successfully revealed. Finally, the influence of taper ratio, c
ter angle, and arc length on the first two natural frequencies of
beams are studied.

2 Basic Analysis
Consider the out-of-plane and in-plane vibrations of a nonu

form curved beam of radiusR, as shown in Fig. 1. Based on th
Bernoulli-Euler hypothesis, if the thickness of the beam is sm
in comparison with the radius of the beam, the displacement fie
of the curved beam in cylindrical coordinates are~@5#!

t.
ion
part-

92,
the
001 by ASME Transactions of the ASME
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ur~r ,s,z,t !5v~s,t !1zf~s,t !,

uu~r ,s,z,t !5u~s,t !2r
]v~s,t !

]s
2z

]w~s,t !

]s
, (1)

uz~r ,s,z,t !5w~s,t !2rf~s,t !,

whereur , uu , anduz denote the displacements of the beam in
r, u, and z directions, respectively.s5Ru and f is the torsion
angle.u, v, andw are the neutral axis displacements of the be
in the r, u, andz-directions, respectively. Substituting Eq.~1! into
the strain-displacement relations in cylindrical coordinates~@14#!
yields

euu52r
]2v
]s2 1zS f

R
2

]2w

]s2 D1S ]u

]s
1

v
RD ,

g ru5zS ]f

]s
1

1

R

]w

]s D ,
(2)

guz52r S ]f

]s
1

1

R

]w

]s D ,

e rr 5ezz5e rz50.

Here, e rr 5ezz50 is consistent with the standard assumption
the thin beam theory that the normal stresses are negligible.

The potential energy and the kinetic energy of the beam ar

V5
1

2 E0

LE
A
~Eeuu

2 1Gg ru
2 1Gguz

2 !dAds

5E
0

L

EF2a1

]2v
]s2 S f

R
2

]2w

]s2 D1a2S ]u

]s
1

v
RD S f

R
2

]2w

]s2 D
2d1

]2v
]s2 S ]u

]s
1

v
RD Gds1

1

2 E0

LFEIzS ]2v
]s2 D 2

1EIr S f

R
2

]2w

]s2 D 2

1EA•S ]u

]s
1

v
RD 2Gds

1
1

2 E0

L

GJS ]f

]s
1

1

R

]w

]s D 2

ds, (3)

and

T5
1

2 E0

LH rAF S ]u

]t D
2

1S ]v
]t D

2

1S ]w

]t D 2G1rJS ]f

]t D 2J ds, (4)

Fig. 1 Geometry and coordinate system of a curved nonuni-
form beam of constant radius
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respectively, wherea1;a2 andd1 are given as

a15E
A
rzdA,

a25E
A
zdA, (5)

d15E
A
rdA.

E(s) is the Young’s modulus,G(s) is the shear modulus,A(s) is
the cross-sectional area,L is the length of the neutral axis, an
r(s) is the mass per unit volume of the beam.I r(s) and I z(s)
denote the area moments of inertia of the beam section abou
r and z-axes, respectively.G(s)J(s) is the torsional rigidity.
When the beam cross section is circular,J(s) is the polar moment
of inertia about theu-axis ~@15#!.

Via Hamilton’s principle, the governing differential equation
and the boundary conditions of the system can be derived. It
be shown that if the cross section of the beam is doubly symme
about ther and z-axes, then the termsa1;a2 will vanish. As a
result, the out-of-plane and in-plane vibrations of curved nonu
form beams are independent. This conclusion is consistent
that for the curved uniform beam theory~@7#!.

The governing differential equations for the out-of-plane vib
tions are two coupled differential equations expressed in the
of-plane flexural and the torsional displacements

FEIr S 1

R
f2w9D G91FGJS 1

R
f81

1

R2 w8D G85rAẅ,
(6)

FGJS f1
1

R
w8D G82EIr S 1

R2 f2
1

R
w9D5rJf̈,

where the primes denote differentiation with respect to thes vari-
able. The governing differential equations for the in-plane vib
tions are

FEIzS 1

R2 u82
1

R
v9D G81FEAS u81

1

R
v D G85rAü,

(7)

FEIzS 1

R
u82v9D G92EAS 1

R
u81

1

R2 v D5rAv̈.

They are two coupled differential equations in terms of the
plane flexural and the longitudinal displacements.

3 Out-of-Plane Vibrations
For time-harmonic out-of-plane vibrations of curve beams w

angular frequencyV, one assumes

f~s,t !5F~s!eiVt,
(8)

w~s,t !5W~s!eiVt.

The coupled governing characteristic differential equations for
out-of-plane vibrations of a curved nonuniform beam are

FEIr S 1

R
F2W9D G91FGJS 1

R
F81

1

R2 W8D G81rAV2W50,

(9)

FGJS F81
1

R
W8D G82EIr S 1

R2 F2
1

R
W9D1rJV2F50.

(10)

The associated boundary conditions are ats50 andL:

FEIr S 1

R
F2W9D G81GJS 1

R
F81

1

R2 W8D50 or W50,

(11)
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EIr S 1

R
F2W9D50 or W850, (12)

GJS F81
1

R
W8D50 or F50. (13)

If the beam is clamped at the boundary, then the boundary co
tions areW50, W850 andF50. If the beam is free at the bound
ary, then the other identities in Eqs.~11!–~13! are specified.

3.1 Governing Differential Equation in Terms of the Flex-
ural Displacement ParameterW

3.1.1 Nonuniform Curved Beams.To simplify the analysis,
one defines two physical parameters

Tw5S GJ
W8

R D 8
1EIr

W9

R
, (14)

Fzw5~EIrW9!92S GJ
W8

R2 D 8
2rAV2W, (15)

whereTw andFzw are the torque per unit arc length and the for
per unit arc length in thez-direction, caused by the flexural de
flection parameterW, respectively. In terms ofTw andFzw , Eqs.
~9!–~10! can be rewritten as

1

R
F5

a1

R
F81

Fzw

g1pw
1

Tw

g1RGJ
, (16)

1

R
F95

a2

R
F81

a3

g1pw
Fzw2

~EIr !9

g1pwRGJ
Tw , (17)

where pw , g1 , a1 , a2 , and a3 are referred in the Appendix
Substituting Eq.~17! into the equation resulted from differentia
ing Eq. ~16!, the relation betweenF9 and W can be obtained.
Substituting the result into Eqs.~16!–~17!, one can explicitly ex-
pressF andF8 in terms of the flexural displacementW parameter

1

R
F85

1

a4
qw1

a1

pwg1~12a18!
Fa3Fzw2

~EIr !9

RGJ
TwG , (18)

1

R
F5

a1

a4
qw1

1

pwg1~12a18!
H ~12a181a1

2a3!Fzw

1
1

RGJ
@pw~12a18!2a1

2~EIr !9#TwJ (19)

where

qw5F 1

g1
S Tw

RGJ
1

Fzw

pw
D G8 (20)

anda4 is given in the Appendix. Substituting Eqs.~18!–~19! into
Eqs. ~9!–~10!, one obtains two uncoupled sixth-order ordina
differential equations. After making some arithmetic operatio
with the two sixth-order equations and Eqs.~18!–~19!, it can be
found that they are dependent. Thus, the uncoupled gover
equation in the lateral displacement parameterW is

H GJH 1

a4
F 1

g1
S Tw

RGJ
1

Fzw

pw
D G8

1
a1

pwg1~12a18!
Fa3Fzw2

~EIr !9

RGJ
TwG1

1

R2 W8J J 8

2EIr H 1

R2 H a1

a4
F 1

g1
S Tw

RGJ
1

Fzw

pw
D G81

1

pwg1~12a18!

3H ~12a181a1
2a3!Fzw1

1

RGJ
@pw~12a18!2a1

2~EIr !9#TwJ
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2
1

R2 W9J1rJV2Ha1

a4
F 1

g1
S Tw

RGJ
1

Fzw

pw
DG81 1

pwg1~12a18!

3H~12a181a1
2a3!Fzw1

1

RGJ
@pw~12a18!2a1

2~EIr!9#TwJ50. (21)

The boundary conditions~11!–~13! in terms ofW are

H EIr H a1

a4
F 1

g1
S Tw

RGJ
1

Fzw

pw
D G8

1
1

pwg1~12a18!
H ~12a181a1

2a3!Fzw1
1

RGJ
•@pw~12a18!

2a1
2~EIr !9#TwJ 2W9J J 8

1GJH 1

a4
F 1

g1
S Tw

RGJ
1

Fzw

pw
D G8

1
a1

pwg1~12a18!
Fa3Fzw2

~EIr !9

RGJ
TwG1

1

R2 W8J 50 (22)

or

W50, (23)

a1

a4
F 1

g1
S Tw

RGJ
1

Fzw

pw
D G81

1

pwg1~12a18!

3H ~12a181a1
2a3!Fzw1

1

RGJ
•@pw~12a18!2a1

2~EIr !9#TwJ
2W950 (24)

or

W850, (25)

and

1

a4
F 1

g1
S Tw

RGJ
1

Fzw

pw
D G81

a1

pwg1~12a18!
Fa3Fzw2

~EIr !9

RGJ
TwG

1
1

R2 W850 (26)

or

a1

a4
F 1

g1
S Tw

RGJ
1

Fzw

pw
D G81

1

pwg1~12a18!

3H ~12a181a1
2a3!Fzw1

1

RGJ
•@pw~12a18!2a1

2~EIr !9#TwJ
50. (27)

3.1.2 Curved Uniform Beams.For curved uniform beams
a15a250, a450 and

a35g15
EIr

R2GJ
2

rV2

G
, (28)

Tw andFzw now are rewritten as

Tw5GJ
W9

R
1EIr

W9

R
, (29)

Fzw5EIrW992GJ
W9

R2 2rAV2W. (30)

Consequently, the governing Eq.~21! reduces to
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W~6!1S 2

R2 1
rV2

G DW991F 1

R42
rV2

E S A

I r
1

1

R2 •
J

I r
D GW9

1
rAV2

GJ S 1

R22
J

I r
•

rV2

E DW50, (31)

whereW(6) indicates the sixth derivative ofW with respect tos.
If the extension effect is not considered, i.e.,E is infinite but

EIr is finite, then in terms ofs* 5s/Ru05s/L andW* 5W/Ru0
5W/L, the governing differential Eq.~31! is reduced to

d6W*

ds* 6 1S 21
rR2V2

G D d4W*

ds* 4 1F12
rR4V2

EIr
S A1

J

R2D G d2W*

ds* 2

1
rAV2R4

GJ S 12
rJR2V2

EIr
DW* 50 (32)

whereu0 is the center angle and is the total arc angle of the cu
beam. This equation is exactly the same as the one given by
@16#.

3.1.3 Straight Nonuniform Beams.When the radius of a
curved beam becomes infinite, the curved beam becomes stra
Consequently, by setting the radius being infinite, the redu
six-order differential Eqs.~21!, ~31!–~32! should reduce to fourth-
order differential equations. However, it can be found that it is
possible to take such a direct limiting study. In this section,
employing the explicit relation~19!, the limiting study is revealed
in the following:

By letting R being infinite in Eqs.~14!–~15!, Tw andFzw yield
to

Tw50, (33)

Fzw5~EIrW9!92rAV2W. (34)

Equation~21! becomes

H GJF 1

a4
S Fzw

g1pw
D 8

1
a1a3

pwg1~12a18!
FzwG J 8

1rJV2Fa1

a4
S Fzw

g1pw
D 8

1
12a181a1

2a3

pwg1~12a18!
FzwG50.

(35)

Equation~19! now is

1

a4
S Fzw

g1pw
D 8

5
2a1a3

pwg1~12a18!
Fzw . (36)

Substituting Eq.~36! with Eq. ~35!, the sixth-order governing
differential Eq.~21! can be reduced to

Fzw5~EIrW9!92rAV2W50. (37)

By settingR being infinite, the boundary conditions Eqs.~11!–
~12! become

~EIrW9!850 or W50, (38)

W950 or W850. (39)

Equation~37! and Eqs.~38!–~39! are the governing differentia
equation and the associated boundary conditions for the flex
vibration of a straight nonuniform beam~@17#!.

It should be mentioned that for a straight beam, the flexural
the torsional vibrations are independent. Upon lettingR being
infinite, Eq. ~37! can also be reduced from Eq.~9! directly.

3.2 Exact Fundamental Solutions and Frequency Equa-
tion. The uncoupled governing characteristic differential eq
tion, in terms ofW, for the out-of-plane vibration of curved non
uniform beams can be expressed as a sixth-order differe
equation with variable coefficients in the form of
Journal of Applied Mechanics
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e0~x!
d6Y~x!

dx6 1e1~x!
d5Y~x!

dx5 1¯1e5~x!
dY~x!

dx

1e6~x!Y~x!50.

xP~0,1!. (40)

Assumee0(x), e6(x) do not vanish on the closed interval@0, 1#
and are in the polynomial forms, i.e.,

ep~x!5(
j 50

mp

ap, j~x2xo! j , p50;6 (41)

wherexo is a constant to be selected for the fastest converge
and 0,xo,1. mp , p50;6 are integers representing the numb
of terms in the series. Then one can assume the six fundam
solutions of the differential equation to be in the form of~@18#!

Yi~x!5
1

i !
~x2xo! i1(

q5n

`

Aq,i~x2xo!q, i 50;5, n56.

(42)

Substituting Eqs.~41!–~42! into Eq. ~40!, collecting the coeffi-
cients of like powers, the following recurrence formula can
obtained:

Aq,i52
~q2n!!

~q! !a0,0
H (

k51

q2n
~q2k!!

~q2k2n!!
a0,kAq2k,i

1 (
m51

n F 1

~ i 2n1m!!
am,q2m2 i

1(
k5m

q2n
~q2k!!

~q2k2n1m!!
am,k–mAq2k,i G J , q>n, n56.

(43)

With this recurrence formula, one can generate the six ex
fundamental solutions of the governing characteristic differen
equation. After substituting these fundamental solutions into
associated boundary conditions, the frequency equation and n
ral frequencies of the beams are obtained, consequently.

4 Numerical Results
To illustrate the previous analysis, the out-of-plane vibratio

of a curved nonuniform beam of circular cross section are stud
The following dimensionless parameters will be used in the f
lowing numerical analysis:

Ru* 5
R

gu~0!
,

m~s* !5
r~s!A~s!

r~0!A~0!
,

bu~s* !5
G~s!J~s!

G~0!J~0!
,

(44)

bru~s* !5
E~s!I r~s!

G~0!J~0!
,

Lu5Ru* u0 ,

Lu5FVYA G~0!

r~0!L2G2

,

wheregu is the radius of gyration about theu-axis.
In Table 1, the first out-of-plane natural frequencies

clamped-clamped curved beams are compared with those in
existing literature. It shows the results are very consistent.
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In the following, the natural frequencies of linearly taper
curved beams with clamped-free ends are studied. The mat
and geometric properties of the beams with taper ratioh are
m(s* )5(12hs* )2, bu(s* )5(12hs* )2 and bru(s* )5bru(0)
3(12hs* )4, respectively.

In Figs. 2 and 3, the influence of taper ratio and curvat
~center angle! on the first and the second dimensionless natu
frequenciesALu of the beams with constant dimensionless a
lengthLu530 and various center angleu0 is shown. For the beam
with center angleu0 being zero, the radius of the beam is infinit
It represents a straight beam. The ones in the figures with c
mark are the dimensionless natural frequencies of a straight
form beam and are consistent with the exact solutions given

Fig. 2 The influence of taper ratio on the first dimensionless
natural frequencies ALu of clamped-free beams with various
center angle u0 „L uÄ30, b r u„0…Ä1.5; : u0Ä0 deg;
" " " : u0Ä20 deg; : u0Ä40 deg; " " " ": u0Ä60 deg …

Fig. 3 The influence of taper ratio on the second dimension-
less natural frequencies ALu of clamped-free beams with vari-
ous center angle u0 „L uÄ30, b r u„0…Ä1.5; : u0Ä0 deg;
" " " : u0Ä20 deg; : u0Ä40 deg; " " " ": u0Ä60 deg …

Table 1 The first out-of-plane natural frequencies of curved
uniform beams with clamped-clamped ends

u0
„degree… R

bru(0)50.615 bru(0)51.0 bru(0)52.0

# & # & # & *

0 ` ¯ 22.373 ¯ 22.373 ¯ 22.373 22.373
90 50 ¯ 20.840 ¯ 20.694 ¯ 20.363 ¯

180 50 18.379 18.361 18.132 18.128 17.564 17.560̄
270 50 17.767 17.765 16.877 16.875 15.343 15.342̄

* : exact frequency parameterp in Rao @19#.
#: a2Akln in Volterra and Morell@20#.
&: cALu shown in the present paper, wherec5Lu /Abru(0)
190 Õ Vol. 68, MARCH 2001
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Meirovitch @17#. From Fig. 2, it can be observed that the fir
natural frequencies of the beams with the same center angle
crease as the taper ratio is increased. Those of the beams wit
same taper ratio increase as the center angle is increased. Fig
shows that the influences of taper ratio and curvature on the
ond natural frequencies are quite different from that on the fi
natural frequencies. The second natural frequencies of the be
with the same center angle decrease as the taper ratio is incre
and those of the beams with the same taper ratio decreased a
center angle is increased.

Figures 4 and 5 show the influence of dimensionless arc len
Lu and taper ratio on the first two natural frequencies of the bea
with constant center angle (u0560 deg). From Fig. 4 it can be
found that the first natural frequencies of the beams with the s
taper ratio decrease as the dimensionless arc length is incre
and those with the same dimensionless arc length increase a
taper ratio is increased. In Fig. 5 it shows that the second nat
frequencies of the beams with the same taper ratio also decr
as the dimensionless arc length is increased. However, the se
natural frequencies of the beams with the same dimensionles
length will increase as the taper ratio is increased only when
dimensionless arc length is approximately less than 13. Thos
the beams will decrease as the taper ratio is increased when
dimensionless arc length is approximately greater than 17.5.

5 Conclusions
In this paper, two physical parameters are introduced to s

plify the analysis of out-of-plane vibrations of curved beams. T
explicit relations between the torsional displacement, its deri
tive, and the flexural displacement are derived. With these exp

Fig. 4 The influence of dimensionless arc length on the first
dimensionless natural frequencies ALu of clamped-free beams
with various taper ratio „b r u„0…Ä1.5, u0Ä60 deg; : hÄ0;

: hÄ0.2; " " " ": hÄ0.4; " " " : hÄ0.6…

Fig. 5 The influence of dimensionless arc length on the sec-
ond dimensionless natural frequencies of clamped-free beams
with various taper ratio „b r u„0…Ä1.5, u0Ä60 deg; : hÄ0;

: hÄ0.2; " " " ": hÄ0.4; " " " : hÄ0.6…
Transactions of the ASME
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relations, the two-coupled governing characteristic differen
equations are reduced to one sixth-order ordinary differen
equation with variable coefficients in the out-of-plane flexural d
placement. It is shown that if the coefficients of the reduced
ferential equation are in arbitrary polynomial forms, then the ex
solutions for the out-of-plane vibrations of nonuniform curv
beams can be obtained. The method can be easily applied t
problems with general elastically restrained boundary conditio
By employing the explicit relations, one only has to measure
variable instead of measuring two variables simultaneously in
experimental study of curved beams. Hence, the difficulty in
perimental measurement can be greatly reduced. In additio
successful limiting study from the curved beam theory to
straight beam theory is revealed. Numerical analysis shows
influence of taper ratio, center angle, and dimensionless arc le
on the first two natural frequencies are quite different.

Acknowledgment
This research work was sponsored by the National Scie

Council of Taiwan, R.O.C. under Grant NSC85-2212-E006-0
and is gratefully acknowledged.

Appendix
The forms ofpw anda1;a8 :

pw5EIr1GJ,

g15
~EIr !9

pw
1

EIr

R2GJ
2

rV2

G
,

a152
GJ

pwg1EIr
S E2I r

2

GJ D 8
,

a25
1

pwg1
S E2I r

2

GJ D 8S rJV2

EIr
2

1

R2D2
~GJ!8

GJ
,

a35
EIr

R2GJ
2

rV2

G
,

a4512F ~GJ!8

GJ
2

~pw1EIr !8

pw
G•F S 1

g1
D 8

1
1

pwg1
2 S E2I r

2

GJ D
3S rJV2

EIr
2

1

R2D G2
~GJ!8

g1GJ
2

1

g1
F ~GJ!8

GJ
2

~pw1EIr !8

pw
G8,

a55F ~GJ!8

pw
G2

•F ~GJ!8

pw
G8,

a652
~GJ!8

pw
3 H H 11F ~GJ!8

pw
G8J ~GJ!8~GJ1pw!8

2zw~GJ1pw!9J ~GJ!-

pw
,

a75H 2FEIr~GJ!8

pw
G92

~GJ!8

R2 S 12
GJ

pw
D1

~GJ!8

pw

•H 2FEIr~GJ!8

pw
G81EIr•H F ~GJ!8

pw
G82

~GJ!8

pw
J J J • 1

rAV2 ,
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a85
1

rAV2pw
H ~EIr !92

GJ

R2 1EIr H F ~GJ!8

pw
G2

2F ~GJ!8

pw
G8J

2
2~EIr !8~GJ!8

pw
J ,

a95H FEIr~GJ!8

pw
G92

~GJ!8

R2 S 12
GJ

pw
D2

~GJ!8

pw
•H 2FEIr~GJ!8

pw
G8

1EIr•H F ~GJ!8

pw
G82

~GJ!8

pw
J J J •F S 1

rAV2D 8
1

~GJ!8

pwrAV2G11

1
1

rAV2R
•H 2

~GJ!8

pw
H 2FEIr~GJ!8

pw
G81EIr H F ~GJ!8

pw
G8

2
~GJ!8

pw
J J 1FEIr~GJ!8

pw
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~GJ!8

R2 •S 12
GJ

pw
D J 8
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a105
GJ

R2 1FEIr

~GJ!8
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Dynamic Analysis of a
One-Dimensional
Poroviscoelastic Column
The response due to a dynamic loading of a poroviscoelastic one-dimensional colu
treated analytically. Biot’s theory of poroelasticity is generalized to poroviscoelasti
using the elastic-viscoelastic correspondence principle in the Laplace domain. Dam
effects of the solid skeletal structure and the solid material itself are taken into acc
The fluid is modeled as in the original Biot’s theory without any viscoelastic effects.
solution of the governing set of two coupled differential equations known from the p
poroelastic case is converted to the poroviscoelastic solution using the developed e
viscoelastic correspondence in Laplace domain. The time-dependent response of t
umn is achieved by the ‘‘Convolution Quadrature Method’’ proposed by Lubich. S
interesting effects of viscoelasticity on the response of the column caused by a
pressure, and displacement loading are studied.@DOI: 10.1115/1.1349416#
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1 Introduction

For a wide range of fluid infiltrated materials, such as wa
saturated soils, oil impregnated rocks, or air filled foams, the e
tic theory is a crude approximation. Due to presence of a sec
interacting continuum, a different theory is necessary. The the
of porous materials containing a viscous fluid, known as
theory of poroelasticity, was introduced by Biot@1#. In subsequent
years, this theory was extended to the anisotropic case~@2#!, and
also to dynamics~@3#!. Following this development, the dynam
as well as the quasi-static analysis of a fully saturated por
continuum is possible. A comprehensive review of the quasi-st
theory in rock mechanics can be found in the work of Detourn
and Cheng@4#.

In addition to the effect of the viscous fluid diffusion in th
pores, the solid constituent, its skeleton, and its interaction w
partially entrapped fluid can introduce time-dependent behavio
viscoelastic material. Further on, the rheology of pore fluid c
exhibit viscoelastic behavior as well. This effect, however, w
not be taken into account in the study here. The implementatio
the solid viscoelastic effects in the theory of poroelasticity w
first introduced by Biot@5#. Further work on this topic was don
in the quasi-static case in@6# and in dynamics in@7#, to cite a few.
The last cited paper generalized Biot’s theory to partially sa
rated continua.

Recently, a representation of the poroviscoelastic theory ba
on rheological modeling at micromechanical level was publish
by Abousleiman et al.@8#. It was argued that to have a physical
consistent model, the rheology for the solid constituent and
skeletal structure should be clearly separated, and then comb
to form a bulk continuum model. Based on this model, origina
in quasi-static range, the current work examines its dynamic
sponses. The set of the governing differential equations for
dynamic case are deduced for a one-dimensional column.
corresponding analytical solution for one-dimensional column
the poroelastodynamic case has been presented by Schan

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, D
cember 12, 1999; final revision, July, 2000. Associate Editor: D. A. Siginer. Disc
sion on the paper should be addressed to the Editor, Professor Lewis T. Wh
Department of Mechanical Engineering, University of Houston, Houst
TX 77204-4792, and will be accepted until four months after final publication
the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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Cheng@9#. The extension to poroviscoelasticity of this solutio
will be done in Laplace domain with the help of the elast
viscoelastic correspondence principle.

With this solution, the frequency-dependent response of
column due to an impulsive load can be studied with respect to
influence of the viscoelasticity by taking the real part of the co
plex Laplace variable to zero. Then, the response of an arbit
dynamical loaded system in time domain is given by the con
lution integral of the impulse response function and the tim
dependent loading. This convolution integral is numerically eva
ated by the so-called ‘‘Convolution Quadrature Method
proposed by Lubich@10#. The weights of this quadrature formul
are determined from the Laplace transformed impulse respo
function and a linear multistep method. In this method, no so
tion in time domain of the original problem is necessary. Throu
a series of stringent tests that includes a comparison with
highly acclaimed Dubner-Abate-Durbin-Crump method~e.g.,@11#
or @12#!, our experience indicates that the Lubich method is one
the most robust in performing the inversion of wave-like functio
that involves a significant number of cycles resulting from imp
loading. This method has been, among other applications,
cessfully applied to a time domain formulation of the bounda
element method~@13#!.

2 Governing Equations
Following Biot’s approach to model the behavior of poro

media, the constitutive equations can be expressed as~@1#!

s i j 52Ge i j 1S K2
2

3
GD ekkd i j 2ad i j p (1a)

z5aekk1
f2

R
p, (1b)

in which s i j denotes the total stress,p the pore pressure,e i j the
strain of the solid frame,z the variation of fluid volume per unit
reference volume, andd i j the Kronecker delta. In the above, th
sign conventions for stress and strain follow that of elastic
namely, tensile stresses and strains are denoted positive. The
indices takes the values 1, 2, 3 or 1, 2 in three-dimensiona
two-dimensional cases, respectively, where summation con
tion is implied over repeated indices. The bulk material is defin
by the material constants shear modulusG and the drained bulk
compression modulusK. Biot’s effective stress coefficienta, the
porosityf, andR complete the set of material parameters.

-
us-
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In the constitutive equations above the only damping effe
taken into account are caused by the interaction of the visc
fluid and the elastic solid. Introducing additionally viscoelastic
is done by means of the elastic-viscoelastic correspondence
ciple, as shown by Biot@5#. In a typical implementation in
Laplace domain, the material constants shown in~1! are replaced
by the corresponding functions of the Laplace variable, i.e., t
become time-dependent. However, this approach provides
physical insight into the rheological models introduced, beca
the effective stress coefficienta, or R, or the pair of coefficientsQ
andR in the partial stress formulation of Biot@5#, have no simple
relation to the compression or shear behavior of the constitue
Rather, considerations of constitutive relation at micromechan
level ~@4#! lead to a more rational model for our purpose

a512
K

Ks
(2)

and

R5
f2K fKs

2

K f~Ks2K !1fKs~Ks2K f !
, (3)

where Ks denotes the compression modulus of the solid gra
andK f the compression modulus of the fluid. With these expr
sions we are able to discuss how to implement viscoelastic be
ior from a physical point of view.

Next, viscoelastic constitutive equations are introduced. Fr
the two most common representations of viscoelastic constitu
equations, the hereditary integral or the differential operator
mulation~@14#!, the differential operator formulation is suitable
our purpose. The simplest model ensuring causal behavior is
three-parameter model, sometimes referred to as Kelvin-V
model~see Fig. 1!. When the system is subjected to a step load
instantly deforms in an elastic state characterized by the sp
constantE1 . As time progresses, the resistance offered by
dash-pot diminishes and the system softens. At large times,
apparent spring constant becomesE5E1E2 /(E11E2), which is
smaller than the initial modulusE1 . The speed of the creep i
regulated by the dash-pot viscositym. A characteristic time scale
for the creep can be defined asq5m/E2 . The appropriate consti
tutive relation is given as

p5
m

E11E2
, E5

E1E2

E11E2
, q5

m

E2
(4)

p
d

dt
s1s5ES «1q

d

dt
« D .

To find the elastic-viscoelastic correspondence, the differen
Eq. ~4! is transformed to Laplace domain

ŝ~ps11!5Eê~11qs!, (5)

with L$ f (t)%5 f̂ (s) denotes the Laplace transform, with the com
plex Laplace variables. Compared with Hook’s law the elastic
viscoelastic correspondence is clearly observed,

E→E
11qs

11ps
, (6)

where the right-hand side is often called complex modulus.

Fig. 1 One-dimensional rheological three-parameter model
Journal of Applied Mechanics
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In the explicit form of~2! and~3!, the Kelvin-Voigt model can
be applied to each of the moduli, corresponding to different phy
cal effects. In detail:

• ReplacingG by the complex modulusĜ(s) models a vis-
coelastic shear behavior of the solid frame.

• ReplacingKs by the complex modulusK̂s(s) models a vis-
coelastic behavior of solid grains against volumetric deformati
This is necessary if the material has its own damping mechan

• ReplacingK by the complex modulusK̂(s) models a vis-
coelastic behavior of the solid skeleton against volumetric de
mation. Such a behavior can be caused, e.g., by micropores w
are not connected to the main part of the fluid. The fluid in m
cropores can propagate through microcracks in the material c
ing damping due to the time required to reach localiz
equilibrium.

• ReplacingK f by the complex modulusK̂ f(s) models a vis-
coelastic behavior of the fluid. This, however, will not be a
tempted here for the following reasons: First, most pore flu
such as water or air are not viscoelastic. Second, a viscoel
fluid can have shear stresses, which will interact with the s
rounding solid. These effects are not modeled in Biot’s theory.
arbitrarily generalization will not lead to a consistent theory.

Summarizing, in the following, a time-dependent compress
and shear modulus of the solidK̂s(s) and Ĝ(s) and a time-
dependent bulk modulusK̂(s) are taken into account. This lead
to the poroviscoelastic constitutive equations in Laplace dom
as

ŝ i j 52Ĝê i j 1S K̂2
2

3
ĜD êkkd i j 2âd i j p̂ (7a)

ẑ5â êkk1
f2

R̂
p̂, (7b)

with

â~s!512
K̂~s!

K̂s~s!

and

R̂~s!5
f2K fK̂s

2~s!

K f~K̂s~s!2K̂~s!!1fK̂s~s!~K̂s~s!2K f !
. (8)

Note, every formerly constant which is now indicated with (ˆ) is
a function ofs, respectively, of time. In the following, it is as
sumed thatK̂s(s), Ĝ(s), andK̂(s) are modeled as a three param
eter model using the correspondence relation~6!

K̂~s!5K
11qks

11pks
, K̂s~s!5Ks

11qkss

11pkss
, Ĝ~s!5G

11qgs

11pgs
.

(9)

This completes the constitutive equations for a poroviscoela
model. In the following, the functional argument~s! will be
dropped for brevity.

Now, the governing set of differential equations are achiev
by inserting~7! in the Laplace transformed dynamic equilibrium

ŝ i j , j1F̂ i5rs2ûi1fr fs
2v̂ i , (10)

and in the continuity equation

sẑ1q̂i ,i50, (11)

where r5rs(12f)1fr f is the bulk density, withrs and r f
denoting the solid and fluid density, respectively. As well t
displacements of the solid are denoted byûi and the relative fluid
to solid displacements byv̂ i . In Eqs. ~10! and ~11! and in the
MARCH 2001, Vol. 68 Õ 193
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following, vanishing initial conditions for all variables are a
sumed.F̂ i are the bulk body forces which are neglected in t
following, as only perturbation from the hydrostatic state
sought, andq̂i5fsv̂ i denotes the specific flux of the fluid. F
nally, the derivative with respect to the spatial variablexi is ab-
breviated by ( ),i .

Proceeding in taking Darcy’s law

q̂i52kS p̂,i1s2r f ûi1
ra1fr f

f
s2v̂ i D (12)

into account, wherek denotes the permeability andra the appar-
ent mass density, the final set of differential equations for
displacementsûi and the pore pressurep̂ are achieved,

Ĝûi , j j 1F K̂1
1

3
ĜG û j ,i j 2~ â2b!p̂,i2s2~r2br f !ûi50

(13)

b

sr f

p̂,i i 2
f2s

R̂
p̂2~ â2b!sûi ,i50, (14)

with the abbreviation

b5
f2skr f

f21sk~ra1fr f !
. (15)

For simplicity, the apparent mass densityra is assumed to be
frequency independent asra'0.66fr f ~@15#!. With this set of
equations the dynamic behavior of a poroviscoelastic continu
is completely defined.

3 Analytical Solution in One Dimension
A one-dimensional column of lengthl as sketched in Fig. 2 is

considered. It is assumed that the sidewalls and the bottom
rigid, frictionless, and impermeable. Hence, the displaceme
normal to the surface are blocked and the column is otherwise
to slide parallel to the wall. At the top, the stresssy and the
pressurep are prescribed. Due to these restrictions only the d
placementuy and the pore pressurep remain as degrees-of
freedom. This one-dimensional example can be used to study
influence of poroelastic parameters on wave propagation, or it
be used for actual application of finite and also semi-infinite c
umns by setting the layer depthl large. Here, we are particula
interested in observing the interplay of the two compressio
waves, a fast and a slow wave.

The governing set of differential Eqs.~13! and ~14! is reduced
to two scalar, coupled ordinary differential equations

Êûy,yy2~ â2b!p̂,y2s2~r2br f !ûy50 (16)

Fig. 2 One-dimensional column under dynamic loading
194 Õ Vol. 68, MARCH 2001
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sr f

p̂,yy2
f2s

R̂
p̂2~ â2b!sûy,y50, (17)

with the modulusÊ5K̂1(4/3)Ĝ. The boundary conditions are

ûy~y50!5U0 , q̂~y50!50

and

ŝ~y5 l !52P0 , p̂~y5 l !5P0 , (18)

where an impulse function for the temporal behaviorf (t)5d(t),
with d(t) denoting the Dirac distribution, is assumed, togeth
with vanishing initial conditions. Each of the nonzero bounda
conditions in~18! represents a different type of loading. Due
the neglected body forces, this is a system of homogeneous
nary differential equations with inhomogeneous boundary con
tions. Such a system has been solved for the nonviscoelastic
in @9#. Inserting in these solutions the elastic-viscoelastic cor
spondences~9! leads to the solution of the poroviscoelastic pro
lem above. As we are dealing with a linear problem the super
sition principle is valid. Therefore, the solution can be divided
the three different load cases:

Stress Boundary Conditions. ûy(y50)50, ŝ(y5 l )52P0
and p̂(y5 l )50

û5
P0

Ê~d1l32d3l1!
Fd3~e2l1~ l 2y!2e2l1~ l 1y!!

11e22l1l

2
d1~e2l3~ l 2y!2e2l3~ l 1y!!

11e22l3l G (19)

p̂5
P0d1d3

Ê~d1l32d3l1!
Fd3~e2l1~ l 2y!1e2l1~ l 1y!!

11e22l1l

2
d1~e2l3~ l 2y!1e2l3~ l 1y!!

11e22l3l G (20)

Pressure Boundary Conditions. ûy(y50)50, ŝ(y5 l )50
and p̂(y5 l )5P0

û5
P0

Ê~d1l32d3l1!
F ~Êl32âd3!~e2l1~ l 2y!2e2l1~ l 1y!!

11e22l1l

2
~Êl12âd1!~e2l3~ l 2y!2e2l3~ l 1y!!

11e22l3l G (21)

p̂5
P0

Ê~d1l32d3l1!
Fd1~Êl32âd3!~e2l1~ l 2y!1e2l1~ l 1y!!

11e22l1l

2
d3~Êl12âd1!~e

2l3~l2y!e2l3~l1y!!

11e22l3l G (22)

Displacement Boundary Conditions. ûy(y50)5U0 , ŝ(y
5 l )50 andp̂(y5 l )50

û5
U0

Ê~l3
22l1

2!
F ~Êl3

21s2~ âr f2r!!~e2l1~2l 2y!1e2l1y!

11e22l1l

2
~Êl3

21s2~ âr f2r!!~e2l3~2l 2y!1e2l3y!

11e22l3l G (23)
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Table 1 Material data of Berea sandstone, a soil, and a sediment

KF N

m2G GF N

m2G rFkg

m3G w KsF N

m2G r fFkg

m3G K fF N

m2G kFm4

NsG
rock 83109 63109 2458 0.19 3.631010 1000 3.33109 1.9310210

soil 2.13108 9.83107 1884 0.48 1.131010 1000 3.33109 3.5531029

sediment 3.73107 2.23107 1396 0.76 3.631010 1000 2.33109 131028
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p̂5
U0

Ê~l3
22l1

2!
Fd1~Êl3

21s2~ âr f2r!!~e2l1~2l 2y!2e2l1y!

11e22l1l

2
d3~Êl3

21s2~ âr f2r!!~e2l3~2l 2y!2e2l3y!

11e22l3l G (24)

The corresponding stresses and fluxes are calculated with the
dimensional form of the constitutive Eq.~7a!

ŝ~s,y!5Êûy,y2â p̂ (25)

and the one-dimensional form of Darcy’s law~12!

q̂~s,y!52
b

sr f
~ p̂,y1s2r f ûy!. (26)

With the solutions above, the frequency-dependent harmo
response of a one-dimensional poroviscoelastic column can
studied by takings52 iv. However, the time-dependent re
sponse due to an arbitrary excitationf (t), is achieved by the
convolution integral, e.g., for the displacements

uy~ t,y!5E
0

t

L21$ûy~s,y!%~t,y! f ~ t2t!dt, (27)

where L21 is the inverse Laplace transform operator. Anoth
way to obtain solution of arbitrary transient input is to take t
advantage of the property of Laplace transform

uy~ t,y!5L21$ûy~s,y! f̂ ~s!% (28)

where f̂ (s) is the Laplace transform of the boundary conditi
f (t).

We now have two possibilities to evaluate the response in t
domain. We can either multiply the impulse response functi
~19!–~24! by the input excitation in Laplace domain,f̂ (s), with a
subsequent numerical inverse transformation as indicated in~28!,
or we use the ‘‘Convolution Quadrature Method’’ proposed
Lubich @10# to directly tackle~27!. The first choice, with all its
advantages and disadvantages, is the traditional approach~see,
e.g.,@12# or @11#!. But, in this case here, where the one function
the convolution integral~27! is available in Laplace domain an
the other function in time domain, it is preferable to take t
Convolution Quadrature Method. This method approximates
convolution integral~27! numerically by a quadrature formula

uy~nDt !5(
k50

n

vn2k~Dt ! f ~kDt !, n50,1, . . . ,N, (29)

whose weightsvn2k(Dt) are determined with the help of th
Laplace transformed impulse response functionsûy(s,y) and a
function g(s) that defines the linear multistep method

vn~Dt !2
R2n

L (
l 50

L21

ûyS g~Reil 2p/L!

Dt De2 inl2p/L. (30)

More details of the method and the definition of parameters ca
found in Appendix A. In the following, this method is used
perform the time-dependent responses, choosing a backward
ferentiation formula of order 2~BDF 2! as the underlying multi-
step method.
Journal of Applied Mechanics
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4 Results in Frequency and Time Domain

With the analytical solution developed in Section 3, the infl
ence of different damping mechanisms is studied. Three very
ferent materials, ranked in descending order of stiffness, a r
~Berea sandstone! ~@16#!, a soil ~coarse sand! ~@17#!, and a seabed
sediment~@18#!, are chosen to cover a wide range of mater
properties. The material data are given in Table 1. We obse
that the stiffness of the material, in terms of frame bulk modu
and shear modulus, spans more than two orders of magnitude
value of bulk density decreases as porosity increases. The
bulk modulus for sediment is different because sea water
referred in @18#. The bulk moduli of solid grain are about th
same. We should point out that for the soil case, dense sand
rated with silicon oil was used in@17#. In Table 1, however, the
fluid was changed to water with other material coefficients c
sistently converted. Finally, we observe that the permeability a
spans more than two orders of magnitude.

In the constitutive Eq.~7! the bulk modulusK̂, the shear modu-
lus Ĝ, and the compression modulus of the solid itselfK̂s are each
chosen to be viscoelastic, modeled by a three-parameter m
For each of them, the values ofp andq need to be given. How-
ever, to the authors’ best knowledge, no such data have b
reported in the literature. Therefore, the same set of data is so
what arbitrarily chosen for the three materials. To compare
influence of viscoelasticity in different moduli on the dynam
response, four different cases are considered:
Case 1: Only the bulk compression modulusK̂(s) is modeled

viscoelastic: pk51@
1
s#, qk51.5@ 1

s# and pks5pg5qks

5qg50@
1
s#.

Case 2: Only the shear modulusĜ(s) is modeled viscoelastic

pg51@
1
s#, qg51.5@ 1

s# andpks5pk5qks5qk50@
1
s#.

Case 3: Only the compression modulus of the solid mate

K̂s(s) is modeled viscoelastic:pks51@
1
s#, qks51.5@ 1

s#

andpk5pg5qk5qg50@
1
s#.

Case 4: The purely poroelastic case without any viscoelastic

pks5qks5pk5pg5qk5qg50@
1
s#.

Before solving the transient problems, the frequency respo
of a column with lengthl 51 m is first considered. In Fig. 3 the
absolute value of the displacementsûy(v,y5 l ) at the top of the
column are plotted versus frequencyv for the three materials. As
boundary condition, a constant step pressure loading~without to-
tal stress! is assumed. In Fig. 3 we observe resonance peak
expected. The first resonance frequency is around 2000 Hz fo
sediment, which increases to about 5000 Hz for the rock. T
various curves correspond to different assumptions of viscoe
ticity, referred to as case 1 to 4 in the above. It is found that
sediment response is least affected by viscoelastic effect—the
basically no shift in eigenfrequencies and only a slight damping
response amplitude. This is in accordance with our model,
MARCH 2001, Vol. 68 Õ 195
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cause the sediment bulk property is dominated by the fluid, wh
is elastic. The viscoelastic solid hence contributes to only a s
ondary influence. The soil response is also less influenced. T
is a small shifting of eigenfrequencies, and a somewhat la
damping than the sediment case. The largest effects are foun
the rock material. Not only there exists larger damping, parti
larly on the resonance peaks, but also significant shift of eigen
quencies occurs. We further observe that for all materials,
largest damping results from the viscoelasticity of bulk compr
sion modulus. For soil, the largest shift of eigenfrequencies res
from the viscoelastic effect ofK̂s , compared to rock whereĜ has
the most influence. This shows that the effect of each modulu
different in different materials.

For the frequency response of the other two boundary co
tions, a stress and a displacement loading, the influence of
coelasticity exhibits similar trend. Hence it is enough to show
results for just this boundary condition.

Now, the time-dependent behavior is considered. Due to
relative insensitivity of sediment response to viscoelasticity, o
results for the two other materials are presented. In Fig. 4
displacementsu(t,y5 l ) at the top of the column, caused by a st
stress loadings(t,y5 l )52H(t)N/m2, are depicted versus time
In each of the curves, a different time-step size is used for
Lubich method, due to different wave speeds of the materials.
the Berea sandstoneDt5131025 s and for the soilDt52
31025 s are used, withN5500 time steps. As with any numerica
method, too large a time-step size leads to worse results du
inadequate approximation of the time history of t
displacements.

In Fig. 4, the rock displacements show an oscillation similar
that for an elastic material, whereas for the soil, the oscillation
combined with a settlement, due to the well-known consolidat

Fig. 3 Absolute value of the displacements zû y„v,yÄ l …z at the
top of the column versus frequency v
196 Õ Vol. 68, MARCH 2001
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effect. We notice that the wave speed is modified in both mat
als. Case 4, the case without viscoelasticity, has the slowest w
speed, by observing the time it takes the wave to transverse
column. This is not surprising, because by setting the two par
etersp andq in ~6! to zero, case 4 has the smallest modulus. In
viscoelastic cases, the apparent modulus of the material is
tween 1.5E for small time ~or high frequency!, and E for large
time ~or low frequency!, due to thep andq values used. Hence th
wave speed of the viscoelastic and the elastic cases should n
directly compared. However, among the viscoelastic cases,
can compare and observe that different modulus has differen
fect on the two materials. The fastest wave in the rock is ass
ated with the viscoelasticity of shear modulus. The fastest wav
soil, on the other hand, is observed to be associated with the s
compression modulus. The oscillation amplitude is found to be
smallest also in these two cases, respectively, for soil and r
These are consistent with the observation in frequency doma

We further tested cases with an increased damping valup,
which is observed to enhance the damping effect. But as m
tioned before, no measured damping values are available. It is
possible to say whether these assumed damping values are r
tic or not. Therefore, these results are not presented here.

We next investigate wave propagation in this one-dimensio
column with the aim of capturing the two compressional waves
fast and a slow wave. These two waves have been identified
the poroelastic case as presented by Schanz and Cheng@9#. To
clearly observe these two waves, a semi-infinite column is use
eliminate reflections at the ends that can confuse the arrival of
two different waves. An observation of pressure is made at 5
below the top surface, where a step stress loading is applied

Our experience in the poroelastic cases~@9#! has indicated that
the second compressional wave dissipates rapidly. With the
meability of these used materials, the second wave will not s
vive with a detectable magnitude at 5 m below surface. To en-

Fig. 4 Displacements u y „t ,yÄ l … at the top of the column ver-
sus time t
Transactions of the ASME
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hance the observation of the second wave, artificially la
permeabilities, or different materials, must be used. For
present purpose, the permeabilities are arbitrarily increased.

In Fig. 5 the pressure at 5 m below surface in an infinitely long
soil column, modeled byl 51000 m, caused by a stress Heavisi
boundary condition, is plotted versus time for different values
the permeabilityk, ranging from 1029 to 1022 m4/(N s), andpk
5pg5pks51.5(1/s). Other material properties are referred
Table 1.

Let us first examine the case with highest permeability,k
51022 m4/(N s). We observe a step rise in pressure that indica
the arrival of the first wave around 2.5 ms. The pressure s
roughly constant until at 13 ms. At that time, the second wa
arrives and negates the positive pressure. Since there is no bo
ary reflection, the identity of the second wave is clearly est
lished. We should point out that the small fluctuation around
pressure front is an artifact of the numerical method, which g

Fig. 5 Pressure p „t ,yÄ995 m… versus time: wave propagation
for different values of k in an ‘‘infinite’’ soil column
Journal of Applied Mechanics
ge
the

e
of

o

tes
ays
ve
und-
b-
he
n-

erally cannot be avoided. It is, however, small enough to be
erated. With decreasing permeability, the first wave arrives at
creasingly larger amplitude, and the second wave at sma
amplitude. In the case ofk53.5531029 m4/(N s), the curve is
flat after the arrival of the first wave, which means that the sec
wave arrives with an undetectable amplitude due to viscous da
ing. These dynamic behaviors are similar to those in the poroe
tic cases without viscoelasticity, as discussed in more detail in@9#.

Once the general dynamic behavior is established, the influe
of viscoelasticity in the individual modulus is studied in Fig. 6. A
in Fig. 5, the pressurep(t,y5995 m) due to a stress Heavisid
step loading is plotted versus time. But here the cases 1
defined in the beginning of this section are examined. To enha
the observation of the second wave, the largest permeability
used in the preceding example,k51022 m4/(N s), is used here.
Similar to the investigation above, the viscoelasticity of differe
modulus has different effects on the two materials. First of all,
observe that the wave velocities are modified, much more so
the second wave than for the first wave. The arrivals of the fi
waves are close to each other. Nevertheless, in both materials
4 gives the slowest first wave. In rock, case 2 has the fastest
wave, and in soil, it is case 3. These are consistent with ea
observations. The second wave, on the other hand, is more c
plicated. In most cases the second wave of the viscoelastic c
travels faster than the nonviscoelastic one, case 4. Howeve
case 3, where only the solid grain modulus is modeled viscoe
tic, the first wave becomes faster, but the second wave beco
slower than case 4. We also observe that there is significant
plitude reduction of the first wave for the rock material wh
viscoelasticity is present, except for case 3, where the amplit
increases. For the soil, there is little change in amplitude.

5 Conclusions
In the presented work, Biot’s theory of porous media is e

tended to poroviscoelasticity by means of the elastic-viscoela
Fig. 6 Pressure p „t ,yÄ995 m… versus time: wave propagation for different damping cases
MARCH 2001, Vol. 68 Õ 197
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correspondence principle. A physically more appealing mode
implemented that separates the viscoelasticity to th
components—that due to the compression of solid frame, of s
grain, and the shearing of solid frame. A three-parameter rh
logical model is applied to each of them. The fluid is modeled
viscous and Newtonian, as in the classical theory. Next, an a
lytical solution of a one-dimensional column is derived in Lapla
domain. Then, with the Convolution Quadrature Method the tim
dependent behavior is achieved.

Three widely different materials, a rock, a soil, and a sedime
are used in the analysis. The viscoelastic effect is found to
stronger in rock and soil, than in sediment. The rock is shown
be more influenced by the shear modulus whilst the soil is m
affected by the compression modulus of the grains. In the
quency domain, shifting of resonance frequencies and dampin
resonance peaks are observed. In the time domain with a
stress loading, viscoelastic effect generally leads to an increa
wave speed for both the fast and the slow waves, and a decrea
amplitude, except for case 3 in rock. This shows the conclus
drawn here are not entirely general, and are material depend
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Appendix A

Convolution Quadrature Method. The ‘‘Convolution
Quadrature Method’’ developed by Lubich numerically appro
mates a convolution integral

y~ t !5E
0

t

f ~ t2t!g~t!dt→y~nDt !5(
k50

n

vn2k~Dt !g~kDt !,

n50,1, . . . ,N, (31)

by a quadrature rule whose weights are determined by the Lap
transformed functionf̂ and a linear multistep method. Thi
method was originally published in@10# and @19#. Application to
the boundary element method may be found in@20#. Here, a brief
overview of the method is given.

In formula ~31! the timet is divided inN equal stepsDt. The
weightsvn(Dt) are the coefficients of the power series

f̂ S g~z!

Dt D5(
n50

`

vn~Dt !zn, (32)

with the complex variablez. The coefficients of a power series a
usually calculated with Cauchy’s integral formula. After a po
coordinate transformation, this integral is approximated by a tr
ezoidal rule withL equal steps 2p/L. This leads to

vn~Dt !5
1

2p i Euzu5R
f̂ S g~z!

Dt D z2n21dz

'
R2n

L (
l 50

L21

f̂ S g~Reil 2p/L!

Dt De2 inl 2p/L, (33)

whereR is the radius of a circle in the domain of analyticity o
f̂ (z).
198 Õ Vol. 68, MARCH 2001
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The functiong(z) is the quotient of the characteristic polyno
mials of the underlying multistep method, e.g., for a BDF
g(z)53/222z1(1/2)z2. The used linear multistep method mu
beA~a!-stable and stable at infinity~@19#!. Experience shows tha
the BDF 2 is the best choice~@21#!. Therefore,t is used in all
calculations in this paper.

If one assumes that the values off̂ (z) in ~33! are computed
with an error bounded bye, then the choiceL5N and RN5Ae
yields an error invn of sizeO(Ae) ~@10#!. Several tests conducte
by the authors lead to the conclusion that the parametee
510210 is the best choice for the kind of functions dealt with
this paper~@13#!. The assumptionL5N results inN2 coefficients
vn(Dt) to be calculated. Due to the exponential function at t
end of formula~33! this can be done very fast using the techniq
of the Fast Fourier Transformation~FFT!.
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Bifurcations of Eigenvalues of
Gyroscopic Systems With
Parameters Near Stability
Boundaries
This paper deals with stability problems of linear gyroscopic systems Mx¨1Gẋ1Kx50
with finite or infinite degrees-of-freedom, where the system matrices or operators de
smoothly on several real parameters. Explicit formulas for the behavior of eigenva
under a change of parameters are obtained. It is shown that the bifurcation (splittin
double eigenvalues is closely related to the stability, flutter, and divergence boundar
the parameter space. Normal vectors to these boundaries are derived using only
mation at a boundary point: eigenvalues, eigenvectors, and generalized eigenvecto
well as first derivatives of the system matrices (or operators) with respect to parame
These results provide simple and constructive stability and instability criteria. The
sented theory is exemplified by two mechanical problems: a rotating elastic shaft car
a disk, and an axially moving tensioned beam.@DOI: 10.1115/1.1356417#
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1 Introduction
The theory of gyroscopic systems has a history which is m

than 100 years old. One of the first investigations in this field w
carried out by Thomson and Tait@1#. The possibility of gyro-
scopic stabilization of unstable conservative systems has to
taken into account in the dynamics of all kinds of rotating bod
such as elastic shafts, satellites, spaceships, etc. Nonrotating
tems like fluid conveying pipes can also be influenced by gy
scopic forces.

Here we restrict ourselves to mentioning only a few of t
numerous books and papers on this subject: Hagedorn@2#, Hu-
seyin et al.@3#, Walker@4#, Barkwell and Lancaster@5#, Seyranian
@6#, Veselic @7#, Seyranian et al.@8#, Lancaster and Zizler@9#,
Kliem and Seyranian@10#, and Mailybaev and Seyranian@11#.
One will find further references in these articles, as well as
concerning older literature—in books by Mu¨ller @12#, Huseyin
@13#, and Merkin@14#.

The mathematical background of the present work is relate
the classical papers on perturbation theory for eigenvalues of
erators by Vishik and Lyusternik@15# and Lidskii @16#. A com-
prehensive review of this theory with some extensions has b
given by Moro et al.@17#. The results of@15# were applied to
vibrational systems and extended to multiple parameters by S
ranian@18#.

Concerning the question of behavior of eigenvalues un
change of a single parameter, Renshaw and Mote@19# formulated
a conjecture on the stability of gyroscopic systems near the
eigenvalue ~divergence boundary!. Lancaster and Kliem@20#
showed by two counterexamples that this conjecture is not ge
ally true. Renshaw@21# ~for the special case of 232 systems with
zero eigenvalue! and Hryniv et al. @22# reformulated the
Renshaw-Mote conjecture with an additional condition a

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ja
1, 2000; final revision, June 25, 2000. Associate Editor: N. C. Perkins. Discussio
the paper should be addressed to the Editor, Professor Lewis T. Wheeler, Depa
of Mechanical Engineering, University of Houston, Houston, TX 77204-4792,
will be accepted until four months after final publication of the paper itself in
ASME JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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showed its validity. In a recent paper, Parker@23# deals with con-
tinuous gyroscopic systems~rotors! with the angular velocity as
parameter. When studying stability he concentrates on a pertu
tion analysis in the vicinity of the zero eigenvalue~divergence
boundary!. To avoid nondifferentiability of the eigenvaluel, he
introduces a formulation of the system in terms ofl2 ~which is
differentiable!. However, this procedure does not work in the ca
of eigenvalues near the flutter boundary. Note that most of
cited papers deal with one-parameter problems.

Our paper is organized as follows. After a general formulat
of the problem withseveral parameterswe derive perturbation
formulas for simple and semi-simple eigenvalues. Then we st
a semi-simple double eigenvalue, and a double eigenvalue w
single eigenvector in detail. These cases are mainly conce
with eigenvalue behavior near thestability-flutter boundary. Af-
terwards we concentrate on the eigenvalue locus near thestability-
divergence boundary~double zero eigenvalue!. The degenerate
case explaining the criterion by Hryniv et al.@22# is investigated
as well. In all casesexplicit expansionsfor eigenvalues near the
stability boundaries are obtained and analyzed. Finally we ill
trate the developed results with mechanical examples.

2 Eigenvalue Problem for a Gyroscopic System
The equation of motion for a linear gyroscopic system is

Mẍ1Gẋ1Kx50, (1)

whereM, G, andK are linear differential operators in some d
mainP if we are modeling a continuum, or realm3m matrices in
the case of a discrete system. Dots mean differentiation with
spect to time of the vectorx of generalized coordinates~or deflec-
tion function!. The system operators or matrices represent tim
independent mass, gyroscopic, and potential forces, respecti
We introduce the inner product by (v,w)5*Pvw̄dP and assume
that the operatorsM andK are self-adjoint andG is skew-adjoint.
This means that (Mv,w)5(v,Mw), (Kv,w)5(v,Kw), and
(Gv,w)52(v,Gw) for all admissible functionsv andw satisfy-
ing the boundary conditions. In the case of matrices,M andK are
symmetric, MT5M , KT5K and G is skew-symmetric,GT

52G. Besides we considerM to be positive definite, (Mu,u)
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.0. It is assumed that the system operators or matrices smoo
depend on a vector of real parametersp5(p1 ,p2 , . . . ,pn)T.

For the sake of simplicity in the following we drop to mentio
every time both the operator and the matrix possibility, since
theory is essentially the same. Therefore we will give an outline
the theory in matrix formulation. Examples will be given for co
tinua as well as for discrete systems.

Consider the eigenvalue problem corresponding to~1!

~l2M1lG1K !u50, (2)

wherel is an eigenvalue, andu a corresponding eigenvector. Th
eigenvaluesl are determined from the characteristic equation

det~l2M1lG1K !50. (3)

It is well known ~@13,24#!, that if l is an eigenvalue of~2!, then
2l, l̄ and2l̄ are also eigenvalues~a bar denotes complex con
jugate!. This means symmetry of the eigenvalues with respec
the imaginary and real axis and is also called Hamiltonian sy
metry according to the fact that gyroscopic systems are Ha
tonian. Then it follows that the stability of the gyroscopic syste
can only be attained when all eigenvalues under a change o
parameters reach the imaginary axis. If all the roots of Eq.~3! are
purely imaginary and simple,l j5 iv j , then the general solution
of Eq. ~1! has the form

x5(
j 51

m

~cjuje
iv j t1 c̄ j ū je

2 iv j t! (4)

implying the stability of the system. In~4! cj are arbitrary com-
plex constants. With a change of the parametersp1 ,p2 , . . . ,pn ,
simple purely imaginary eigenvalues move along the imagin
axis. They cannot leave this axis due to the Hamiltonian sym
try of the eigenvalues. This means that the stability of the gy
scopic system can only be lost when some simple eigenva
meet on the imaginary axis~become multiple!.

For the sake of convenience we introduce the inner produc
vectorsa andb in the complex spaceCm by

~a,b!5b* a5(
j 51

m

aj b̄j . (5)

A star after a symbol means the transposed and complex co
gate quantity.

Along with ~2! we consider the adjoint eigenvalue proble
with eigenvectorv

~l2M1lG1K !* v50. (6)

If we introduce the notation

Lªl2M1lG1K (7)

then we have

L* 5l̄2MT1l̄GT1KT5l̄2M2l̄G1K. (8)

Note that if the eigenvalue is purely imaginary,l5 iv, then the
matrix operatorL is Hermitian, i.e.,L5L* . This follows directly
from ~7! and~8!. For this case the adjoint eigenvalue problems~2!
and ~6! coincide, such that the eigenvectors of the two proble
can be chosen to coincide as well,

v5u. (9)

3 Perturbation of Eigenvalues

We assume that at a pointp5p0 in the parameter spaceRn the
gyroscopic system possesses a purely imaginary eigenvalul0
5 iv0 , simple or multiple. Our task is to study the behavior
eigenvalues in the vicinity of the initial pointp0 .

For this purpose we consider a parameter variationp5p0
1«e, wheree5(e1 , . . . ,en) is a direction vector of unit norm
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ueu51, and« is a small positive number. Since the matrices of t
gyroscopic system~1! depend smoothly on the vector of param
etersp, we obtain

M5M01«M11«2M21 . . . , G5G01«G11«2G21 . . . ,
(10)

K5K01«K11«2K21 . . .

where

M05M ~p0!, G05G~p0!, K05K~p0!,

M15(
j 51

n
]M

]pj
ej , G15(

j 51

n
]G

]pj
ej ,

(11)

K15(
j 51

n
]K

]pj
ej , M25

1

2 (
j ,k51

n
]2M

]pj]pk
ejek

with respective expressions forG2 , K2 , etc.
Due to the variation of the vectorp, the eigenvaluel and cor-

responding eigenvectoru take increments which can be express
as series in integer or fractional powers of«, depending on the
Keldysh chain~see Gohberg et al.@25#!.

Simple Eigenvalue. We assume that atp5p0 the eigenvalue
l05 iv0Þ0 is a simple root of the characteristic Eq.~3! with the
eigenvectoru0 . According to the perturbation theory of non
selfadjoint operators~@15,16#!, in this case the eigenvalues an
eigenvectors can be expanded in integer power series of«

l5 iv01«l11«2l21 . . . , u5u01«w11«2w21 . . . .
(12)

For the first terml1 we find ~@18#!

l152
~L1u0 ,u0!

~G0u0 ,u0!12l0~M0u0 ,u0!
(13)

where we used the notation

L15(
j 51

n
]L

]pj
ej5(

j 51

n S l0
2

]M

]pj
1l0

]G

]pj
1

]K

]pj
Dej

5l0
2M11l0G11K1 . (14)

Formula~13! can be transformed to a more appropriate form
we multiply the numerator and the denominator of~13! by l0
5 iv0 and use the equality

l0
2~M0u0 ,u0!1l0~G0u0 ,u0!1~K0u0 ,u0!50 (15)

which follows from ~2!. Then we get

l15
2 iv0

3~M1u0 ,u0!2v0
2~G1u0 ,u0!1 iv0~K1u0 ,u0!

v0
2~M0u0 ,u0!1~K0u0 ,u0!

.

(16)

Due to symmetry properties of the matricesM, G, andK and
Eq. ~11! we haveM1

T5M1 , K1
T5K1 , G1

T52G1 . This means
that the quantities (M1u0 ,u0) and (K1u0 ,u0) are real, and the
quantity (G1u0 ,u0) is purely imaginary. Then from~16! we de-
duce thatl1 is purely imaginary~or zero! in accordance with the
above conclusion that purely imaginary simple eigenvalues
not leave the imaginary axis. They are differentiable with resp
to parameters.

Multiple Eigenvalue: Semi-Simple Case. We assume that a
p5p0 the eigenvaluel05 iv0 with algebraic multiplicityr pos-
sesses a full number of linear independent eigenvec
u1 ,u2 , . . . ,ur . If the other eigenvalues are purely imaginary a
simple, then the solution of~1! at p5p0 takes the form

x5(
j 51

r

~cjuje
iv0t1 c̄ j ū je

2 iv0t!1 (
j 5r 11

m

~cjuje
iv j t1 c̄ j ū je

2 iv j t!

(17)
Transactions of the ASME
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with cj being arbitrary complex constants. Expression~17! shows
that the motion of the gyroscopic system~1! at p5p0 is stable.

To study the behavior of eigenvalues near the pointp0 we
consider a parameter variationp5p01«e. According to the re-
sults of the perturbation theory~@15,16#!, in the case under stud
the eigenvalues must be expanded into integer powers of«

l5 iv01«l11«2l21 . . . . (18)

The first-order coefficientsl1 are determined by the Eq.~@18#!

detF ~L1uj ,uk!1l1S ]L

]l
uj ,ukD G50, j ,k51,2, . . . ,r (19)

where for the eigenvectors of the adjoint problem we substitu
v j5uj , j 51,2, . . . ,r , and the notationL1 from ~14! is used. The
validity of expansion~18! is ensured by the assumption that t
matrix @(L1uj ,uk)# is nonsingularand the rootsl1 of equation
~19! are alldistinct, see@16,17#. An example violating this condi-
tion was reported~@20#! in the one-parameter case with an expa
sion l56 i«3/21 . . . different from ~18!. With the above as-
sumption we rule out such nongeneric cases. It should also
mentioned that without the extra assumption of distinct rootsl1
of ~19! the expansion~18! has to be changed into the weaker for

l5 iv01«l11o~«!.

Equation~19! can also be written as

detF ~L1uj ,uk!2 il1S i
]L

]l
uj ,ukD G50, j ,k51, . . . ,r . (20)

The matrices@(L1uj ,uk)# and@( i ]L/]luj ,uk)# are Hermitian,
since the operatorsL1 and i ]L/]l are Hermitian. If one of the
two matrices is positive definite, then there exists a ba
u1* ,u2* , . . . ,ur* , in which both matrices are diagonal and re
This means that in this basis we have

~L1u1* ,u1* !2 il1
~1!~ i ]L/]lu1* ,u1* !

50, . . . ,~L1ur* ,ur* !2 il1
~r !~ i ]L/]lur* ,ur* !50. (21)

If a Hermitian operatorH is positive definite, then the so-calle
Gram matrix@(Huj ,uk)#, j ,k51, . . . ,r is positive definite for lin-
ear independent vectorsu1 , . . . ,ur ~@26#!. In the case when
i ]L/]l is definite, we can solve~21! and get purely imaginary
valuesl1

(1) , . . . ,l1
(r ) all different from zero since@(L1uj ,uk)#

was assumed nonsingular. This means splitting~bifurcation! of
the semi-simple eigenvaluel0 along the imaginary axis. Thus, w
obtain a simple sufficient criterion for stability:

If the operator i]L/]l is positive (or negative) definite, the
the multiple eigenvaluel05 iv0 splits into r purely imaginary
eigenvalues for any vector of variation e in the parameter spa
ensuring stability of the gyroscopic system (1) near the ini
point p0 (except for directions e for which some rootsl1 are
equal to each other).

However, in the general case when the matrixi ]L/]l is not
definite, the stability of the gyroscopic system can be lost wh
we consider small changes of parameters. We will study suc
possibility thoroughly for the case of a double eigenvaluer
52).

Double Eigenvalue: Semi-Simple Case.We consider a
double eigenvaluel05 iv0Þ0 with two linearly independen
eigenvectorsu1 andu2 . For the first-order coefficientl1 we have
the quadratic Eq.~20!. We assume that the eigenvectors satisfy
orthogonality condition

~ i ]L/]lu1 ,u2!50. (22)

This diagonalization can always be done since the ma
@( i ]L/]luj ,uk)# is Hermitian.
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For convenience of the analysis we introduce the followi
notation:

~L1u1 ,u1!5a1 , ~L1u2 ,u2!5a2 , ~L1u1 ,u2!5a12,
(23)

~i]L/]lu1,u1!5b1, ~i]L/]lu2,u2!5b2.

The quantitiesa1 ,a2 ,b1 ,b2 are real numbers whilea12 is com-
plex. With this notation we can write Eq.~20! in the form

detFa12 il1b1 a12

ā12 a22 il1b2
G50 (24)

and we find

l15
2 i ~a1b21a2b1!6A2~a1b22a2b1!224b1b2ua12u2

2b1b2
.

(25)

if we assumeb1b2Þ0.
Let us first consider the case, whenb1 and b2 have the same

sign,b1b2.0, i.e., the matrix@( i ]L/]luj ,uk)# is definite. Then it
follows immediately that the solutions~25! yield stable splitting
of the double eigenvaluel05 iv0 along the imaginary axis for
arbitrary variatione in the parameter space. This case was de
with in the previous subsection.

The caseb1b2,0 leads to an unstable bifurcation of the doub
eigenvaluel05 iv0 into two eigenvalues with nonzero real part
if the discriminant of the quadratic Eq.~24! is positive, i.e., if

24b1b2ua12u2.~a1b22a2b1!2. (26)

Now we introduce real vectorsf 1 , f 2 and f 3PRn with the
coordinates

f 1
j 1 i f 2

j 52A2b1b2~]L/]pju1 ,u2!,
(27)

f 3
j 5b2~]L/]pju1 ,u1!2b1~]L/]pju2 ,u2!.

Using ~14!, ~23!, and~27! we rewrite~26! as

^ f 1 ,e&21^ f 2 ,e&2.^ f 3 ,e&2, (28)

where the inner product̂•,•& of vectors inRn is defined in the
usual way.

Note that the vectorsf 1 , f 2 , and f 3 depend only on the infor-
mation at the initial point, and do not depend on the vector
variatione.

If e satisfies inequality~28!, it belongs to the instability domain
but if the left-hand side of~28! is less than the right-hand side
thene belongs to the stability domain. The boundary surface
tween the stability and instability domains is determined by
equality

^ f 1 ,e&21^ f 2 ,e&25^ f 3 ,e&2. (29)

This is a conical surface in the parameter spaceRn, dividing the
stability and instability domains. But on this surface expansio
~18! are not guaranteed since on the surface the two rootsl1 of
Eq. ~25! are equal.

Consider the two-dimensional parameter spacep5(p1 ,p2) and
a vector of variatione5(cosa,sina), see Fig. 1. Then we get fo
the stability domain the inequality

~ f 1
1 cosa1 f 1

2 sina!21~ f 2
1 cosa1 f 2

2 sina!2

<~ f 3
1 cosa1 f 3

2 sina!2. (30)

Introducing the coefficients

A5~ f 1
1!21~ f 2

1!22~ f 3
1!2, B5 f 1

1f 1
21 f 2

1f 2
22 f 3

1f 3
2,

(31)
C5~f1

2!21~f2
2!22~f3

2!2, D5B22AC,

inequality ~30! yields the quadratic inequality

C tan2~a!12B tan~a!1A<0. (32)
MARCH 2001, Vol. 68 Õ 201
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For example, ifC.0, D.0, then the stability domain is given
by

~2B2AD !/C<tana<~2B1AD !/C. (33)

The stability domain~S! in the vicinity of the initial pointp0 for
Cases~1! and~3! is shown qualitatively in Fig. 1. These and oth
possibilities for the stability domain are depicted in Table 1.

Double Eigenvalue With a Single Eigenvector. This case is
also described in the literature as non-semisimple eigenvalue
strong interaction. We assume that atp5p0 the eigenvaluel0
5 iv0 is a double root of the characteristic Eq.~3!, corresponding
to a Keldysh chain of length 2~@25#!:

Lu050, (34)

Lw052~]L/dl!u0 . (35)

It means that there exists only one eigenvectoru0 , and w0 is a
generalized~or associated! eigenvector; the partial derivative ofL
is taken atl0 . A solution of~35! exists only if the right-hand side
of ~35! is orthogonal to the solution of the adjoint eigenval
problem~6!, which isv05u0 according to~9!. Thus we have

~]L/]lu0 ,u0!50. (36)

Assuming that the other eigenvaluesl j are purely imaginary
and simple, a solution of~1! at p5p0 takes the form~@25#!:

x5c1u0eiv0t1 c̄1ū0e2 iv0t1c2~u0t1w0!eiv0t

1 c̄2~ ū0t1w̄0!e2 iv0t1(
j 53

m

~cjuje
iv j t1 c̄ j ū je

2 iv j t!. (37)

Here cj , j 51, . . . ,m are arbitrary complex constants. The sol
tion ~37! is unstable~onset of instability! due to the presence o
the secular termteiv0t.

With the intention to study the behavior of eigenvalues near
point p0 we consider a variationp5p01«e. According to the
perturbation theory~@15,16#! in this particular case the expansion
of eigenvalues and eigenvectors contain fractional powers of«,

Fig. 1 Stability „S… and flutter „F… domains in two-dimensional
parameter space in the vicinity of the initial point p 0

Table 1 The stability domain for different combinations of
parameters

~1! C.0, D.0 (2B2AD)/C<tana<(2B1AD)/C
~2! C.0, D,0 Isolated stability point
~3! C,0, D.0 tana<(2B1AD)/C,

tana>(2B2AD)/C
~4! C,0, D,0 No instability domain
202 Õ Vol. 68, MARCH 2001
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l5l01«1/2l11«l21 . . . , u5u01«1/2w11«w21 . . . .
(38)

For the first coefficientl1 we find ~@18#!

l1
252

~L1u0 ,u0!

~]L/]lw0 ,u0!1~M0u0 ,u0!
, (39)

where notation~14! has been used. For the eigenvalue of t
adjoint problem we have substitutedv05u0 , see~9!. It is easy to
prove that the right-hand side of~39! is a real number. First we
estimate the term

~]L/]lw0 ,u0!5~@G012l0M0#w0 ,u0!

5~w0 ,@G012iv0M0#* u0!

5~w0 ,@2G022l0M0#u0!5~w0 ,2]L/]lu0!

5~w0 ,Lw0!5~Lw0 ,w0!. (40)

The chain of equalities~40! holds due to~35! and the Hermitian
propertyL* 5L.

Note that the validity and convergence of expansion~38! is
ensured by assumption that the right-hand side of~39! is not zero,
which means (L1u0 ,u0)Þ0, see@15–16#.

For the one-parameter case this condition also appears in@22#
as sufficient for instability in a one-side vicinity ofp0 . With ~40!
and ~14! equality ~39! becomes

l1
252

(
j 51

n

~]L/]pju0 ,u0!ej

~Lw0 ,w0!1~M0u0 ,u0!
. (41)

The operatorsL, ]L/]pj , andM0 are Hermitian. Hence the right
hand side of~41! is a real number.

For convenience we introduce a real vectorhPRn with the
coordinates

hj52
~]L/]pju0 ,u0!

~Lw0 ,w0!1~M0u0 ,u0!
. (42)

The vectorh depends only on the information at the initial poi
p0 and does not depend on the vector of variatione. Then~41! is
rewritten as

l1
25^h,e&. (43)

Eventually, from~38! we end up with

l5 iv06A«^h,e&1O~«!. (44)

Equation ~44! clearly shows nondifferentiability of a doubl
eigenvalue with respect to parameters. For all variationse satisfy-
ing the inequalitŷ h,e&.0 the double eigenvalue bifurcates in
two simple, one of them having a positive real part. If we assu
the remaining eigenvalues simple and purely imaginary t
means onset of flutter (v0Þ0) or divergence (v050) instability
of the gyroscopic system. And if we take variationse satisfying
the inequality ^h,e&,0, the double eigenvalue splits into tw
purely imaginary eigenvalues which means stability of the syst
This shows that the pointp0 belongs to the boundary surfac
between the stability and instability domains in the parame
space, and the vectorh is the normal to the boundary and lies
the instability domain, see Fig. 2.

Note that expansions~38! and ~44! become invalid if l1
2

5^h,e&50, i.e., when the vector of variatione belongs to the
tangent plane of the stability boundary.

Double Zero Eigenvalue. ~1! First we consider a double
semi-simple eigenvaluel050 with two real eigenvectorsu1 and
u2 . Using~11! and~14! in ~19! and taking therel050 we obtain
the quadratic equation for the first term coefficientl1
Transactions of the ASME



o

b

tic
isk
sion
ef-

-

is
detF ~K1u1 ,u1! ~K1u1 ,u2!1l1~G0u1 ,u2!

~K1u2 ,u1!1l1~G0u2 ,u1! ~K1u2 ,u2!
G50.

(45)

The terms (G0uj ,uj ), j 51,2 disappear because the eigenvect
u1 andu2 are real andG0

T52G0 . Besides, we have

~K1u2 ,u1!5~K1u1 ,u2!, ~G0u2 ,u1!52~G0u1 ,u2! (46)

due to the symmetry properties ofK1 and G0 . Therefore~45!
results in

l1
2~G0u1 ,u2!21~K1u1 ,u1!~K1u2 ,u2!2~K1u1 ,u2!250.

(47)

We introduce real vectorsk1 , k2 , andk12 with the coordinates

k1
j 5~]K/]pju1 ,u1!, k2

j 5~]K/]pju2 ,u2!,
(48)

k12
j 5~]K/]pju1 ,u2!, j 51, . . . ,n

and assume the normality condition

~G0u1 ,u2!51. (49)

Then using~11! and substituting~48! and ~49! into ~47! we get

l156A^k12,e&22^k1 ,e&^k2 ,e&. (50)

If the vector of variatione satisfies the inequality

^k12,e&22^k1 ,e&^k2 ,e&,0 (51)

the system is stable, and ife satisfies~51! with the opposite sign
., the gyroscopic system becomes unstable~divergence!. The
equality sign in~51! corresponds to the boundary between sta
ity and divergence domains.

~2! Consider now the case of a double eigenvaluel050 with a
single eigenvector, i.e., a Keldysh chain of length 2. Substitut
~7! into ~34! and ~35! with l050 we obtain

K0u050, K0w052G0u0 . (52)

Sinceu0 is a real vector andG0
T52G0 , the orthogonality condi-

tion ~36! is always satisfied, (G0u0 ,u0)50. Then Eqs.~39! and
~41! imply

l1
252

~K1u0 ,u0!

~K0w0 ,w0!1~M0u0 ,u0!
(53)

and the coordinates of the normal vectorh to the stability bound-
ary according to~42! take the form

hj52
~]K/]pju0 ,u0!

~K0w0 ,w0!1~M0u0 ,u0!
, j 51, . . . ,n. (54)

Now bifurcation of eigenvalues is given by~44! with v050. The
stability condition is^h,e&,0, and the instability~divergence!
condition is^h,e&.0. It is easy to see that the stability conditio
applied to 232 matrices with one parameter agrees with that
@21#.

Fig. 2 Normal vector h and vector of variation e at a point of
the stability boundary
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Example 1. Consider a simple model of a massless elas
shaft rotating with a constant angular velocity and carrying a d
with mass. The shaft is subjected to a constant axial compres
force. In nondimensional variables with respect to a rotating r
erence system this rotor is described by a gyroscopic system~1!
with the system matrices, see@13#

M5F1 0

0 1G , G52vF0 21

1 0 G ,
K5Fc12h2v2 0

0 c22h2v2G . (55)

Herec1 andc2 are the elastic rigidities of the shaft in two prin
cipal directions,h represents the compression force, andv is the
angular velocity of the shaft rotation. A stability analysis of th
system depending on four parametersc1 , c2 , h and v was pre-
sented in@8#.

Now we want to study stability of the system~1!, ~55! with
respect to the parametersc1 and c2 , taking fixed values of the
other two parametersh53 andv52.

Consider the point (c1 ,c2)5(7,7). According to~2!, ~3! at this
point we have a double eigenvaluel050 with two linear inde-
pendent eigenvectors

u15~a,0!T, u25~0,b!T, aÞ0, bÞ0. (56)

This is the semi-simple case. Using the normality condition~49!
and ~55!, we find 2vab51. As v52 we can takea51, b
51/4. According to~18!, ~50! we have

l56«A^k12,e&22^k1 ,e&^k2 ,e&1O~«2! (57)

wheree is a vector in thec1 , c2-plane. Calculating the vectorsk1 ,
k2 , k12 with the use of~48!, ~55!, and~56! we obtain

k15~1,0!T, k25~0,1/16!T, k125~0,0!T. (58)

Following ~51!, ~57!, and~58! we find that the stability domain
in the vicinity of the point (c1 ,c2)5(7,7) is given by the inequal-
ity

^k1 ,e&^k2 ,e&.0. (59)

If we take both possibilitieŝk1 ,e&.0, ^k2 ,e&.0 and^k1 ,e&
,0, ^k2 ,e&,0 we get the result that the vectore belonging to the

Fig. 3 Stability and instability domains in the two-dimensional
parameter space of the rotating shaft with vÄ2 and hÄ3. S
denotes stability, D-divergence, and F-flutter.
MARCH 2001, Vol. 68 Õ 203



b

t
t

e

a

n
l

W

ei-
stability domain~S! lies in the first and third quadrants, see Fig.
and fore in the two other quadrants we have divergence insta
ity ~D!.

For comparing with the one-parameter case of~@21,22#! we
choosec15p andc25142p which corresponds to lined in Fig.
3. Then the stability condition presented in these papers is
satisfied since the matrix@(L1uj ,uk)#5@0

1
21

0 # is indefinite, and
nothing can be said about stability or instability. But according
our theory this case means divergence instability.

Another situation concerns points (c1 ,c2 ,h,v) in the four-
parameter space satisfying the equation

~c12c2!218v2~c11c222h!50 (60)

which, according to@8#, is a boundary between stability and flu
ter. The eigenvalues on this boundary are double and equal

l56 iA~c11c2!/22h1v2. (61)

The eigenvaluel05 iA(c11c2)/22h1v2 possesses a singl
eigenvectoru0 and, according to~35!, a generalized~associated!
eigenvectorw0 given by

u05~ i2vA2~c11c222h12v2!, c12c224v2!T,

w05~0, ~23c12c214h!/l0!T. (62)

Then vectorh from ~42! has the coordinates

h1524v2~c11c212v222h!/d, h258v2~c12h2v2!/d,

h3524v2~c12c224v2!/d,

h45v~6c1
222c2

224c1c228hc118hc2!/d,

d523c1
21c2

212c1c214hc124hc214v2~c22c114v2!.
(63)

If we choose a constant angular velocityv52, the stability
boundary ~60! becomes the paraboloid (c12c2)2132(c11c2
22h)50. Consider, e.g., the vicinity of the point (c1 ,c2 ,h)
5(3,3,3) on the paraboloid. For this point the vectorh from ~42!
has according to~63! the coordinates (h1 ,h2 ,h3)T5(21/2,
21/2,1)T, h is the normal to the paraboloid and lies in the area
flutter instability. If we chooseh53 constant as well,~60! be-
comes a parabola in the (c1 ,c2) parameter space with the norm
vector (h1 ,h2)T5(21/2,21/2)T at the pointp5(c1 ,c2)5(3,3).
Choosing the vectore5(cosa,sina)T, expressions~43! and ~44!
result in

l1
25^h,e&52~cosa1sina!/252sin~a1p/4!/&,

(64)
l5 iA~c11c212!/26 iA« sin~a1p/4!/&1O~«!.

In the vicinity of the point (c1 ,c2)5(3,3) we get therefore
stability for all chosen vectorse satisfying

^h,e&,0⇔2p/4,a,3p/4 (65)

and flutter instability for

^h,e&.0⇔3p/4,a,7p/4 (66)

in agreement with the stability map in@8#, see Fig. 3.
For a52p/4 anda53p/4 we gete56(&/2,2&/2) which

is tangential to the stability boundary, andl1 is zero. In this case
only an investigation of higher order coefficientsl2 ,l3 , . . . in
expansion~38! can give an answer.

Example 2. Consider an axially moving beam modeling ba
saws, belts, magnetic tapes, etc., see@27,23#. The nondimensiona
equation of motion for free response is

ytt12nyxt1yxxxx1~n22k2!yxx50 (67)

where n and k represent transport speed and axial tension.
assume simply supported boundary conditions.

With y5eltu(x) we obtain the eigenvalue problem
204 Õ Vol. 68, MARCH 2001
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l2u12lnux1uxxxx1~n22k2!uxx50,
(68)

u~0!5uxx~0!5u~1!5uxx~1!50.

The corresponding differential operators in~1!, ~2!, and~7! are

M51, G52n]/]x, K5]4/]x41~n22k2!]2/]x2,
(69)

L5l212ln]/]x1]4/]x41~n22k2!]2/]x2

and depend on the two parametersn andk.
Investigating divergence instability we consider the double

genvaluel050 in Eq. ~68! and obtain the critical speedsnc with
corresponding eigenfunctionsu0 , see@23#

nc
25k21n2p2, u05sinnpx, n51,2, . . . . (70)

The divergence boundaries are shown in Fig. 4.
To find the generalized eigenfunctionw0 we write the eigen-

value problem~52! in the form

]4w0 /]x41n2p2]2w0 /]x2522nc]u0 /]x,
(71)

w0~0!5~]2w0 /]x2!x5050, w0~1!5~]2w0 /]x2!x5150.

Using ~70! leads to the general solution

w05~cnp/2!x sinnpx2c1c~11~21!n11!x1c cosnpx

1g sinnpx, n51,2, . . . (72)

wherec52nc /(np)3 andg is an arbitrary constant.
According to ~44!, ~54! we can find the vectorh describing

splitting of the double eigenvaluel050 near the divergence
boundary. The operators in~54! become

]K/]k522k]2/]x2, ]K/]n52nc]
2/]x2. (73)

Computing the inner products with the use of~70!, ~72! we
obtain

~]K/]ku0 ,u0!522kE
0

1

]2u0 /]x2u0dx5kn2p2,

~]K/]nu0 ,u0!52ncE
0

1

]2u0 /]x2u0dx52ncn
2p2,

~Kw0 ,w0!52~Gu0 ,w0!

52nc
2~3n2p2216~11~21!n11!!/~2n4p4!,

~Mu0 ,u0!51/2. (74)

Finally, we find the vectorh which is normal to the divergence
boundaries as

Fig. 4 Stability „S… and divergence „D… domains of the axially
moving beam
Transactions of the ASME
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h5
2n6p6

n4p42nc
2~3n2p2216~11~21!n11!!

~2k,nc!. (75)

Here the factor of the vector (2k,vc) is positive for n51 but
negative forn52,3, . . . .

Since the vectorh lies in the divergence domain, we have th
following result~see also Fig. 4!. The eigenvaluel is stable in the
vicinity below the first critical speed (n51) and unstable above
The opposite situation occurs for all the other critical speedsn
52,3, . . . ) where the eigenvaluel is unstable below the critica
speed and stable above. This is in agreement with the resu
Parker @23#, who investigated the one-parameter problem w
two first critical speeds.

The splitting of the zero eigenvalue is according to~44! given
by

l56A«^h,e&1O~«!. (76)

It should be noted that we only have considered the stabi
divergence boundaries. For fixedk and sufficiently largen above
the second divergence boundary (n52), flutter instability occurs,
as shown numerically in@27#.

Conclusion
We have studied the bifurcations of eigenvalues of gyrosco

systems under a change of several real parameters. These c
stiffness and mass coefficients, geometrical sizes, character
of material properties, loads, rotational speeds, etc. Stability
gyroscopic system can only be lost when eigenvalues meet on
imaginary axis. It follows from this observation that stability
instability ~flutter, divergence! depend on the bifurcation of mul
tiple eigenvalues under a change of parameters.

The main distinction and advantage of the present theory
comparison with previous research is that it is a multiparam
study and explicit expressions for the bifurcations of eigenval
are given, leading to stability as well as to instability condition
The obtained formulas allow to construct approximations of
stability domain in the parameter space using information only
a point on the boundary. Without the given approach, such a c
struction is a difficult and time consuming problem in the mu
parameter case. The formulas can also be useful for applying
dient methods to stabilize the system.

The results of the developed perturbation theory are essent
similar for systems with finite degrees-of-freedom as well as
distributed systems governed by differential operators. We h
demonstrated this by studying two mechanical problems.
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Does a Partial Elastic Foundation
Increase the Flutter Velocity
of a Pipe Conveying Fluid?
The effect of the elastic Winkler and rotatory foundations on the stability of a
conveying fluid is investigated in this paper. Both elastic foundations are partially
tached to the pipe. It turns out that the single foundation, either translational or rotat
which is attached to the pipe along its entire length, increases the critical velocity. S
an intuitively anticipated strengthening effect is surprisingly missing for the elastic
umn on Winkler foundation subjected to the so-called statically applied follower for
Yet, partial foundation for the pipe conveying fluid is associated with a nonmonoto
dependence of the critical velocity versus the attachment ratio defined as the length
partial foundation over the entire length of the pipe. It is concluded that such a parad
cal nonmonotonicity is shared by both the realistic structure (pipe conveying fluid) an
the ‘‘imagined system,’’ to use the terminology of Herrmann pertaining to the colu
under to follower forces.@DOI: 10.1115/1.1354206#
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1 Introduction
In 1972, Smith and Herrmann published a study devoted

the stability of the elastic Beck’s column under follower forc
when the column is attached to the elastic translational Win
foundation with uniform modulusk. They arrived at the para
doxical conclusion that the flutter load does not depend of
translational foundation modulus, irrespective of its magnitu
Due to this surprising conclusion the paper by Smith a
Herrmann@1# generated several other studies. These studies d
in their approach to explain the above mathematical res
Sundararajan@2# showed that if the elastic foundation modulus
nonuniform along the column axis then the flutter load depends
the elastic foundation modulus. Other investigators~@3–5#!
showed that the noninclusion of the damping terms was the
responsible for the paradoxical conclusion arrived at by Smith
Herrmann@1#. Note that the Smith and Herrmann conclusion p
taining the Winkler foundation does not hold for the column
rotatory foundation. Becker et al.@6# investigated this problem
and concluded that even in the undamped case when the mo
of the rotatory foundation increases the flutter load of the sys
increases too. Panovko and Gubanova@7# mention, in the fourth
edition of their book, that the conclusion by Smith and Herrma
@1# is ‘‘ . . . wrong and represents a direct consequence of
tremely early transfer to the ideal elastic model. . . . Critical load
depends of the stiffness coefficient of the foundation.’’ In tw
publications Koiter@8,9# criticized the very notion of follower
forces, since there is no experimental verification~at least until
presently! of the existence of the purely statically applied follow
forces. He quoted from Herrmann@10#: ‘‘It is a peculiar feature of
stability problems of elastic systems subjected to~nonconserva-
tive! follower forces that their analysis arose not out of a desire
need to consider a system which presented itself in enginee
practice or in the research laboratory, but rather because theficti-
tiously applied follower forcesacting on a given system wer
arbitrarily prescribed to depend in a certain manner on defor
tion.’’

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, De
8, 1998; final revision, Aug. 15, 2000. Associate Editor: D. A. Siginer. Discussion
the paper should be addressed to the Editor, Professor Lewis T. Wheeler, Depa
of Mechanical Engineering, University of Houston, Houston, TX 77204-4792,
will be accepted until four months after final publication of the paper itself in
ASME JOURNAL OF APPLIED MECHANICS.
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In these circumstances it appears instructive to study the e
of the elastic foundation on the stability of a realistic proble
namely the pipe conveying fluid. This problem is also a nonc
servative one, and has been extensively investigated theoretic
experimentally, and numerically. The most recent comprehen
review of research in this area is given by Paı¨doussis and Li@11#
~see also Paı¨doussis@12#!. The effect of elastic foundation on th
fluid conveying pipe was investigated in several studies. Bec
et al.@13# illustrated the variety of behaviors for different kinds o
foundations; Lottati and Kornecki@14# derived numerous result
for the case of varying fluid-over-total mass ratio when only t
translational Winkler foundation was present.

In this paper we study the effect of the translational and ro
tory foundations on the stability of the pipe conveying fluid, wi
elastic foundation attached to apart of the pipe. The analysis
includes, as a particular case, the presence of these founda
along theentire length of the pipe, and allows the compariso
with other studies. We are interested in the effect of elastic fo
dations on the behavior of realistic problem, rather than ‘‘une
pected behavior of an imagined system,’’ in the terminology
Hermann@10# as he characterizes the ‘‘follower forces.’’

2 Equation of Motion
Consider a slender cantilever pipe of lengthl, with uniform

cross-sectional areaA and moment of inertiaI. The material of the
pipe is assumed to obey a viscoelastic stress-strain relationsh
the Voigt type withE0 being the elastic Young’s modulus,c the
internal andb the external damping coefficient. The mass of t
pipe for unit length is denoted bymp . The pipe that is conveying
an incompressible fluid of densityr with constant velocityV rests
for a lengtha (0<a< l ) along its axis on an elastic Winkler-typ
foundation with constant modulusk1 and damping coefficientd1
so that the forcef w(x,t) per unit length associated with it is

f w~x,t !5S k11d1

]

]t DU~a2x!w (1)

whereU(•) is the unit-step function. Additionally, on the sam
interval, the pipe is supported by a rotary foundation with const
modulusk2 and damping coefficientd2 resulting in the restoring
distributed moment

m~x,t !5S k21d2

]

]t DU~a2x!
]w

]x
(2)
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and has the dimension of a force. The basic equation of motion
small transverse vibrationsw(x,t) is derivable either from Hamil-
ton’s principle ~@15#! or through using the dynamic equilibrium
approach. The latter way will be adopted in this study, followi
Gregory and Paı¨doussis@16# and Blevins@17#. In addition to their
derivation, we introduce damping mechanisms and translatio
and rotary foundations.

Consider an element of a pipe and a fluid as shown in Fig
Let the internal perimeter of the pipe beS. When the fluid flows
through the deflecting pipe, it experiences centrifugal accelera
due to the changing curvature of the pipe. The acceleratio
opposed by the vertical component of fluid pressure applied to
fluid element and the pressure forcef per unit length applied on
the fluid element by the pipe walls. A requirement of the balan
of forces in two respective directions, namely, along the tangen
the centerline of the deflected element and the perpendicular
yields the equations

A
]p

]x
1qS50 (3)

f 2pA
]2w

]x2 2rAS ]

]t
1V

]

]xD 2

w50 (4)

whereq is the shear stress on the internal surface of the pipe
to the friction with the fluid. The equations of motion for the pip
in the same directions are similarly found as

]T

]x
1qS2Q

]2w

]x2 50 (5)

]Q

]x
1T

]2w

]x2 2 f 2mp

]2w

]t2 2b
]w

]t
2 f w50 (6)

whereT is the longitudinal tension in the pipe andQ is the trans-
verse shear force. The relationship between the shear forceQ and
the bending momentM acting on the section reads

Fig. 1 Forces and moments acting on elements of „a… a fluid
and „b… the pipe
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Q5m2
]M

]x
. (7)

The constitutive equation gives

M5E0I S 11c
]

]t D ]2w

]x2 (8)

Equation~6!, considering Eqs.~4!, ~7!, and~8! to eliminate forces
f andQ, becomes

E0I S 11c
]

]t D ]4w

]x4 1~pA2T!
]2w

]x2 1rAS ]

]t
1V

]

]xD 2

w

1mp

]2w

]t2 1b
]w

]t
1 f w2

]m

]x
50. (9)

By neglecting the third term in the left-hand side of Eq.~5!, as
being of the second order inw, the shear stressq is eliminated
from Eq. ~3! and Eq.~5! to result in

]~pA2T!

]x
50. (10)

We assume that at the free end of the pipe the tension is zero
that the fluid pressure is equal to the ambient pressure,p5T50 at
x5 l . Consequently,

pA2T50 (11)

everywhere. Thus Eq.~9!, after substituting expressions forf w
andm, becomes

EIS 11c
]

]t D ]4w

]x4 1rAS ]

]t
1V

]

]xD 2

w1mp

]2w

]t2 1b
]w

]t

1S k11d1

]

]t DU~a2x!w2S k21d2

]

]t DU~a2x!
]2w

]x2 50.

(12)

The boundary conditions that apply to the cantilever pipe rea

w50 and
]w

]x
50, at x50

(13)

M5EIS 11c
]

]t D ]2w

]x2 50, at x5 l .

In case of thepartial foundation in the interval 0<x<a, l , the
fourth boundary condition reads

Q5EIS 11c
]

]t D ]3w

]x3 50, at x5 l . (14)

When the foundation is attached along the entire length of
beam the fourth boundary condition is more complicated,

Q5EIS 11c
]

]t D ]3w

]x3 2S k21d2

]

]t D ]2w

]x2 50 at x5 l .

(15)

It is remarkable that in the latter case the rotatory foundation te
k2 appears in the boundary condition, since the expression for
shear force in Eq.~7! contains the termm(x,t), responsible for
the effect of the rotatory foundation. We seek solution of Eq.~12!
in the form

w~x,t !5eVtz~x! (16)

The following dimensionless quantities are introduced:

j5
x

L
; mf5rA; v5VAmf1mp

E0I
l 2;
MARCH 2001, Vol. 68 Õ 207
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m5A mf

mf1mp
; a5

a

l

n5VlAmf

E0I
; x15

k1l 4

E0I
; x25

k2l 2

E0I
; b5

bl2

AE0I ~mf1mp!
(17)

g5
c

l 2A E0I

mf1mp
; d15

d1

l 2 A E0I

mf1mp
; d25

d2

l 2 A E0I

mf1mp
.

Equations~12! and ~15! become

L~z![~11vg!zIV1@n22x2~11vd2!U~a2j!#z912vnmz8

1@vb1~x11vd1!U~a2j!1v2#z50 (18)

z~0!50; z8~0!50; z9~1!50 (19)

z-~1!50; ~ if a51! (20)

~11vg!z-~1!2~x21vd2!z8~1!50; ~ if a,1! (21)

where the operatorL is defined in Eq.~18!, and the primes indi-
cate derivative with respect to the dimensionless coordinatej. The
behavior of the nonconservative system governed by the ab
non-self-adjoint problem is dictated by the value of the real par
the dimensional exponentsV j in Eq. ~16! or their dimensionless
counterpartsv j in Eq. ~17!. From Eq.~16! it is evident that if
Re(Vj).0 the transverse deflections are time-wise unbound
and the flutter phenomenon occurs. On the other hand, neg
values of Re(Vj) lead to decaying~and, hence, stable! oscillations
of the pipe. The analysis requires the evaluation of sets of con
parameters for which the stability of the system is lost. The va
of the fluid velocityn is taken as a control parameter while all th
others are fixed. The minimum valuen for which the pipe under-
goes unstable oscillations is referred as thecritical velocity. In the
following the nondimensional critical velocityncr is evaluated
numerically by both exact and approximate analyses. The
proximate analysis may appear to be superfluous at the
glance, yet its results are utilized as initial guesses for the itera
solution scheme required in the exact setting.

3 Exact Solution
Instead of using Eq.~16!, we represent the solution in tw

regions:

w~x,t !5H eVty1~x!; for 0<x,a

eVty2~x!; for a<x, l .
(22)

Equation~18! becomes

L1~y1![~11vg!y1
IV1@n22~x21vd2!#y1912vnmy18

1@vb1~x11vd1!1v2#y150; for 0<j,a

(23a)

L2~y2![~11vg!y2
IV1n2y2912vnmy281~vb1v2!y250;

for a<j<1. (23b)

The continuity conditions on the interface between the two
gions read

y1~a!5y2~a!

y18~a!5y28~a!
(24)

y19~a!5y29~a!

~11vg!y1-~a!2~x21vd2!z8~1!5~11vg!y2-~a!.

The boundary conditions~19!–~21! are recast in the following
manner:

y1~0!50; y18~0!50; y29~1!50; y2-~1!50. (25)
208 Õ Vol. 68, MARCH 2001
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The solutions of the differential Eqs.~23! are given by

y1~j!5(
j 51

4

Cje
l jj; y2~j!5(

j 55

8

Cje
l jj (26)

with the conventional modifications in the event that two or mo
roots coincide. In Eq.~26! l j , j 51,2, . . . ,8, are theroots of the
characteristic equations

~11vg!l42@n22~x21vd2!#l212vnml1vb

1~x11vd1!1v250; ~ j 51, . . . ,4! (27a)

~11vg!l42n2l212vnml1vb1v250; ~ j 55, . . . ,8!.
(27b)

Upon introduction of Eq.~26! in the conditions~24!, ~25!, one
obtains the system of linear equations in terms of the vectorC of
constantsCj

(
j 51

4

Cj50; (
j 51

4

Cjl j50; (
j 55

8

Cjl j
2el j50; (

j 55

8

Cjl j
3el j50

(
j 51

4

Cje
l ja5(

j 55

8

Cje
l ja; (

j 51

4

Cjl je
l ja5(

j 55

8

Cjl je
l ja

(28)

(
j 51

4

Cjl j
2el ja5(

j 55

8

Cjl j
2el ja; (

j 51

4

~11vg!Cjl j
3el ja

2~x21vd2!l je
l ja5~11vg!(

j 55

8

Cjl j
3el ja.

These equations can be written in matrix form as

EC50 (29)

whereE is the matrix with the following elements different form
zero:

E1 j51, ~ j 51, . . . ,4!; E2 j5l j , ~ j 51, . . . ,4!;

E3 j5l j
2el j , ~ j 55, . . . ,8!; E4 j5l j

3el j , ~ j 55, . . . ,8!;

E5 j5el ja, ~ j 51, . . . ,4!; E5 j52el ja, ~ j 55, . . . ,8!;
(30)

E6 j5l je
l ja, ~ j 51, . . . ,4!; E6 j52l je

l ja, ~ j 55, . . . ,8!;

E7 j5l j
2el ja, ~ j 51, . . . ,4!; E7 j52l j

2el ja, ~ j 55, . . . ,8!;

E8 j5~11vg!l j
3el ja2~x21vd2!l je

l ja, ~ j 51, . . . ,4!;

E8 j52~11vg!l j
3el ja, ~ j 55, . . . ,8!.

In order for a nontrivial solution( CjÞ0 of system in Eq.~28!
to exist, the determinant of the matrixE must vanish. This re-
quirement leads, after some algebra, to a characteristic equ
written in the following form:

Det~E!5C~l1 ,l2 , . . . ,l8 ,x2 ,d2 ,g!50. (31)

Substitution of the values ofl j from Eqs.~27a! and~27b! into Eq.
~31! yields the characteristic equation in terms ofv. At n50 the
real parts of the eigenvaluesvk (k51,2, . . . ) arenegative. Asn
increases their magnitudes vary, and at a certain critical velo
ncr the real part of at least one of the frequencies changes
from negative to positive, indicating the onset of instability. At t
boundary of instability the real part of this frequency vanish
and its imaginary part is termed the critical frequencyvcr . The
method of solution is based on an optimization procedure
keeps varying the velocityn and the imaginary part Im~v! of the
eigenvalue while Re~v!50, until a minimum is reached for the
real function Abs~Det~E!!. The correspondent value ofn is the
desired critical velocity only if the minimum of the latter functio
Transactions of the ASME
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is equal to zero so that Eq.~31! holds; moreover, in ordern to
qualify asncr there should be no lesser value ofn for which the
same condition is verified. Analogous numerical procedure w
utilized by Lottati and Kornecki@14#.

In order to ensure convergence of the procedure to the e
solution it is advantageous to start the process from a kno
approximate solution that is sufficiently close to the exact one.
this aim the Galerkin approximation is resorted to in order
furnish a representation for the starting point. As will be demo
strated, the combined use of the optimization procedure in c
junction with the Galerkin method for the initial guess turns out
be an efficient way to arrive at the exact solution.

4 Auxiliary, Approximate Solution for the Initial
Guess

According to the Galerkin method the displacement funct
z(j) appearing in Eq.~16! is expanded in series

z~j!5(
j 51

N

H jzj~j! (32)

whereH j are unknown coefficients,zj (j) are comparison func-
tions. The comparison functionszj (j), representing a complet
set, read

zj~j!5
~ j 13!~ j 213 j 122P!

j 11
j j 112

2~ j 13!~ j 212 j 2P!

j 12
j j 12

1~ j 21 j 2P!j j 13, ~ j 51,2, . . .! (33)

where

P5H 2
~x21vd2!

11vg
, for a51

0, otherwise.

(34)

The coefficients in front ofjn (n5 j 11,j 12,j 13) are chosen so
to be reducible to known Duncan polynomials~@18#! for which the
parameterP is identically zero. Substituting Eq.~33! into Eq.~18!
and multiplying the result by the comparison functionzk(j) and
integrating over the entire length of the beam, results in the se
N algebraic equations

(
k51

N

AjkHk50; j 51,2, . . . ,N (35)

whereN is the number of retained term. In Eq.~35!,

Ajk5E
0

1

zjL~zk!dj. (36)

To fulfill the requirement of nontriviality (( Hk
2Þ0) the determi-

nant of the matrixA has to be set equal to zero. This leads to
characteristic equation

asv
s1as21vs211 . . . 1a1v1a050. (37)

The degrees of the polynomial equals 4N in the case of a
rotatory foundation attached to the pipe along itsentire length; it
equals 2N in the case ofpartial foundation. This is explained a
follows: From Eq.~18! we deduce that in case of fully attache
rotatory foundation the expressionL(zk) results inv3, sincezj

also containv in the first power, the result is the appearance ofv4

in Ajk . For N-term approximation, consequently, we get term
with v4N. In case ofpartial foundationP vanishes automatically
so thatL(zk) results inv2 andzj does not containv. HenceAjk

contain the termsv2; for N term approximation we get term
containingv2N. The stability analysis is then reduced to the n
merical evaluation ofv from Eq. ~37!. Since the fluid velocity is
the only control parameter, by its gradual increase we evaluate
rootsv of Eq. ~37! until the real part of one of them approaches
Journal of Applied Mechanics
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zero value from below, this implies that the critical velocity
reached. Alternatively, the application of the Hurwitz criterio
~@19#! to Eq.~37! yields the sought critical velocity. The values o
ncr so determined are utilized as input data for the exact anal
described in Section 3.

5 Numerical Results
To gain some insight into the behavior of the system, the cr

cal velocityncr , as a function of the foundation attachment ra
a, is extensively investigated for numerous cases. For a be
understanding on the contribution of each type of foundation
the stability of the pipe, the cases of purely Winkler as well
purely rotatory foundation will be considered first. Finally, th
general case of combined presence of both foundations wil
addressed.

5.1 Winkler Foundation Alone. Let us investigate the cas
x250, so that only the Winkler foundation is present. Figure
illustrates the dimensionless critical velocityncr for different
values of the mass ratiom and the internal damping coefficien
g. Solid line corresponds to the pipe without internal dampi
~g50!; the dotted line indicates the caseg50.001; the dash-dotted
line is associated withg50.005, whereas the dashed line depic
the caseg50.01. Inspection shows that the presence of a
foundation has a stabilizing effect, in the sense that the crit
velocity associated with a full foundation~a51! is greater than
that associated with a pipe without an elastic foundation~a50!,
although this feature is more pronounced form>0.3. Specifically,
in the caseg50.001, form50.1, critical velocity of the pipe with-
out foundation equals 4.362, whereas its counterpart for the
foundation equals 4.420, constituting an increment of 1.33 p
cent. Form50.3 the corresponding values are 4.749 and 5.5
respectively, resulting in 16.61 percent increase. Form50.5 and
m50.7, respectively, the increases are 26.71 percent and 7.93
cent. Investigation of the effect of partial foundation, which a
parently was not conducted prior to this study, for the pipe c
veying fluid, reveals some interesting effects. It turns out th
surprisingly, the critical velocity does not always vary monoto

Fig. 2 Dimensionless critical velocity ncr as a function of the
attachment ratio a of a Winkler foundation with modulus x1
Ä200 and damping coefficient d1Ä0.01, for different values of
the mass ratio m and of the internal damping „solid: gÄ0; dot-
ted: gÄ0.001; dash-dotted: gÄ0.005; dashed: gÄ0.01…. External
damping bÄ0.001.
MARCH 2001, Vol. 68 Õ 209
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cally when the attachment lengtha of the foundation increase
from zero tol. In fact, for smaller values of the mass ratio, name
m50.1 or m50.3, increase in the attachment length of the fou
dation beyond a certain threshold leads to adrop of the critical
velocity. It starts to increase again once the attachment len
increases beyond another value. For example, form50.1 and
g50.001 ~dotted line!, in the range 0.479<a<0.883 the depen-
dencencr versus the attachment ratio is a decreasing function w
ncr reaching its minimum equal to 4.005 ata50.833; this value is
8.2 percent less than the critical velocity (ncr54.362) of the pipe
with no foundation. The internal damping increases the criti
velocity for low values ofm ~inspect the case withm50.1 or
m50.3!, whereas its contribution becomes smaller, although
stabilizing, for m50.5 in the range 0<a<0.7. Internal damping
reduces the critical velocity form50.5 beyond the attachmen
ratio 0.7. It affects likewise in the casem50.7, for attachment
ratio below 0.75. Such a reduction is usually characterized in
literature as destabilizing effect, although Bolotin and Zhinzh
@20# warn that this term is ‘‘not a very appropriate concept.’’ Th
may suggest that the terms stabilizing effect and destabilizing
fect are scientific slang, although widely used. Recent pape
Semler, Alighanbari and Paı¨doussis@21# provides new physica
insight into this phenomenon. Note that the critical velocity a
preciably increases as the mass ratio grows. This result was
parently first pointed out by Gregory and Paı¨doussis@16#. Note
that for the follower force analog of this problem, without intern
damping but with partial foundation, was considered by Elis
koff and Wang@22#, unaware at that time of the Koiter’s@8#
criticism on the very existence of the follower forces. In this ca
the dependence of the critical load versus the attachment ratio
a single maximum; moreover, when the attachment is full,
flutter load equals to that of the column without foundation. As
see the consideration of the realistic problem~that of the pipe
containing fluid! has less amount of surprising effects than it
unrealistic counterpart, the column with follower forces, yet in
itively unexplainable effects remain.

The contribution of the Winkler foundation modulusx1 is con-
sidered in Fig. 3~m50.1!. It shows that the amplitude of thi
parameter does not alter the nonmonotonous behavior of the
cal velocity as a function of the length of the partial foundatio
The stabilizing effect of a full Winkler foundation is insignifican
although assuredly present, for mass ratiom50.1. Namely, at
a50, ncr54.362; ata51, ncr54.363 for x1510 whereasncr
54.421 forx15200. Figure 4 portrays the dependencencr versus

Fig. 3 Dimensionless critical velocity ncr versus the attach-
ment ratio a and the Winkler foundation modulus x1 „d1
Ä0.01…. Internal damping gÄ0.001; external damping bÄ0.001;
mass ratio mÄ0.1.
210 Õ Vol. 68, MARCH 2001
ly
n-

gth

ith

al

till

t

the
er
is
ef-
by

p-
ap-

al
a-

e,
had
he
e

u-

riti-
n.
,

a as influenced by the external dampingb and the damping asso
ciated to the foundation. As one can see they increase the fl
velocity albeit not in large extent.

5.1 Rotatory Foundation Alone. Consider now a pipe rest
ing on a purely rotatory foundation~x150; x2Þ0!. As in the
case of a purely Winkler foundation, the fully attached rotato
foundation has a stabilizing effect. Indeed, for the fully attach
pipes withm50.3 andg50.001~Fig. 5, dotted line!, purely rota-
tory foundation~x150; x2510! increases the critical velocity by
37.9 percent. Note that the Winkler foundation withx1510 and
x250 results in 0.84 percent enhancement. The nonmonot
behavior characteristic of purely Winkler foundation persists,
though it is less pronounced~see Fig. 5!. The effect of the internal
damping is similar in both the cases, and will not be recapitula
in this subsection.

Fig. 4 Dimensionless critical velocity ncr as a function of the
attachment ratio a of a Winkler foundation with modulus x1
Ä50, for different values of the damping coefficients b and d1 .
Internal damping gÄ0.001; mass ratio mÄ0.1.

Fig. 5 Dimensionless critical velocity ncr as a function of the
attachment ratio a of a rotatory foundation with modulus x2
Ä10 and damping coefficient d2Ä0.01, for different values of
the mass ratio m and of the internal damping „solid: gÄ0; dot-
ted: gÄ0.001; dash-dotted: gÄ0.005; dashed: gÄ0.01…. External
damping bÄ0.001.
Transactions of the ASME
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A paradoxical effect of the partial foundation is evident fro
Fig. 5. Form50.5 the maximum value of the critical velocity i
not reached when the rotatory foundation is fully attached to
pipe. Form50.5 andg50.01 ~dashed line!, the maximum critical
velocity is reached for the attachment equal to 0.874. The m
mum critical velocity for a purely rotatory foundation withm50.7
and g50.01 is achieved ata50.852, and drops thereafter. Stil
the critical velocity for full foundation is greater than its counte
part for the pipe without foundation.

Figure 6 illustrates, in the casem50.1, the dependence of th
critical velocity versus modulus of rotatory elastic foundationx2 ,
and the attachment ratioa. For the interval 0<a<0.6 the surface
appears to be quite flat, with sharp increase recorded therea
The effect of the presence of the rotatory foundation is p
nounced only whena.0.6. The influence of the external dampin
and of the damping associated to the rotatory foundation is
ported in Fig. 7. They both have a stabilizing effect, although t
due to the external damping is larger.

Fig. 6 Dimensionless critical velocity ncr versus the attach-
ment ratio a and the rotatory foundation modulus x2 „d2
Ä0.01…. Internal damping gÄ0.001; external damping bÄ0.001;
mass ratio mÄ0.1.

Fig. 7 Dimensionless critical velocity ncr as a function of the
attachment ratio a of a rotatory foundation with modulus x2
Ä10, for different values of the damping coefficients b and d2 .
Internal damping gÄ0.001; mass ratio mÄ0.1.
Journal of Applied Mechanics
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5.2 Both Types of Foundations Present. The stability of a
pipe resting on a generalized foundation, where the resto
forces and the restoring moments act simultaneously, is of m
interest. Figures 8 and 9 depict the critical velocity forx1 fixed at
10 while x2 is varied. They show that the stability behavior
essentially like that of pipes on purely Winkler or purely rotato
foundation, depending on the ratio of the foundation mod
x1 /x2 and the attachment ratioa. Such an effect of the ratio
x1 /x2 is anticipated; the influence of the attachment ratio is l
obvious. As we see until the valuea50.6 is reached, the curve
associated with different values ofx2 are in close vicinity be-
tween each other. Oncea.0.6 pronounced effect of the rotator
modulus occurs. Figure 9 depicts a sharp increase in the cri
velocity for m50.5 at specific attachment ratios. For examp
ncr57.273 fora50.6 andx2510, at a slight increase in the a
tachment ratio~a50.65! the critical velocity increases by 18.8
percent and equals 8.646. As the fully attached rotatory or W
kler foundations, acting alone or in concert, have a stabiliz
effect, one can wonder if the presence of a fully attached foun
tion of one kind only, with the other only partially attached, gua
antees an increase of the flutter velocity. The answer to this

Fig. 8 Dimensionless critical velocity ncr as a function of the
attachment ratio a of a generalized foundation with moduli x1
Ä100, x2 and damping coefficient d1Ä0.01, d2Ä0.01. Internal
damping gÄ0.001; external damping bÄ0.001; mass ratio
mÄ0.1.

Fig. 9 Dimensionless critical velocity ncr as a function of the
attachment ratio a of a generalized foundation with moduli x1
Ä100, x2 and damping coefficient d1Ä0.01, d2Ä0.01. Internal
damping gÄ0.001; external damping bÄ0.001; mass ratio
mÄ0.5.
MARCH 2001, Vol. 68 Õ 211
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quiry is negative. For example, a decrease of the flutter velo
occurs in the case when a fully attached soft rotatory founda
(x251) is present along with a stiff Winkler foundation (x1
5100) with attachment ratioa'0.8.

6 Conclusions
The effect of the partial foundations was studied on the flu

velocity of the pipe conveying fluid. Unlike the Beck’s column o
Winkler foundation subjected to purely statically applied ‘‘fo
lower’’ load, the dynamic stability behavior of the pipe conveyin
fluid is influenced by presence of the elastic foundations. T
question posed in the title of the paper is answered at this stag
follows: Linear analysis predicts that if elastic foundations act
alone or in combination are attached at the entire length of
pipe, the critical velocity increases; if, however, the attachmen
partial the estimate of the critical velocity may either decrease
increase depending on the attachment ratio and other param
of the system. The news of two kinds appear to be generated.
good news is that the paradoxical result characteristic of
Beck’s column with Winkler foundation is absent in the realis
system. Namely, if the foundations are attached along the e
length of the pipe the critical velocity increases. The bad new
the uncovered unexpected nonmonotonous dependence o
critical velocity versus the attachment ratio. This phenomen
could be explained due to following reasons.~1! Possibly, the
damping mechanisms known to us do not exhaust all poss
damping phenomena; one may speculate that in the future, a
damping mechanism will be uncovered whose inclusion in
linear analysis will remove the above nonmonotonous behav
Since in words of St. Augustine, we ‘‘know not what we kno
not,’’ the further speculation on this direction appears to be
productive at this stage at least.~2! ‘‘Small’’ nonmonotonicity
exhibited in Fig. 9 form50.1 could well be attributed to the
structural model used~Bernoulli-Euler theory!; use of refined
theories may not be associated with nonmonotonicity in so
ranges of the parameters.~3! Yet another explanation could lie in
recognition of the fact that the pipe undergoes large displacem
and the nonlinear analysis of the problem is called for. This la
assessment expressed by the first author was shared by K
@23#. A study of the title problem in nonlinear setting is underw
and will be reported elsewhere.~4! One cannot rule out the pos
sibility that even the nonlinear setting will not remove the no
monotonous dependence of the stability characteristics on
elastic foundations. Indeed, to quote Thompson@24#, the pipe con-
veying fluid belongs to the class of problems where ‘‘ . . . con-
ventional structural theorems can be not only violated, but a
ally reversed under fluid loading due to its essentia
nonconservative character.’’
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Optimal Fiber Orientation in
Locally Transversely Isotropic
Creeping Structures
An approximate method is developed for comparing various fiber configurations
composite structure with the objective of achieving optimal resistance to creep fa
The class of composite structures addressed has a single family of long or contin
strong fibers embedded in a creeping matrix material, e.g., a polymer, metal, etc.
the structure is locally transversely isotropic with the fiber orientation generally vary
throughout the structure. The proposed method, intended as an early design tool, is
on an upper bound on creep rupture time and an associated representative failure s
The latter is evaluated and compared for different fiber configurations, thereby identi
that with optimal creep rupture resistance. This approach allows a substantial savin
computational time by avoiding a detailed analysis of the actual failure process. A
cation is made to a fiber-reinforced thick-walled cylindrical pressure vessel.
@DOI: 10.1115/1.1354623#
e

m
i

u
i

i

c

g
u

s
l

o

sed

-
nti-
der
f the
a

nc-
al.
ion

ysis
ing

This
site
lure
urse,
ba-
be

ed
are
in-

l of
e-
ing

uc-
tor

and
by

age

r
a
t

Introduction
When strongly reinforced composite structures operate at t

peratures in the creep range of their matrix material, they su
time-dependent deformation and eventually fail. The failure ti
is critically influenced by the fiber configuration in the compos
structure. Design engineers need simple methods of assessin
effects of fiber orientation on creep rupture, especially for use
the early stages of design.

A creep damaging structure initially incurs damage in regio
of relatively high stress, leading to local softening and subsequ
redistribution of stress as the damage zone spreads througho
structure. Detailed numerical calculations of the stress redistr
tion and corresponding failure are known to require substan
computing time even for relatively simple structures. Repeat
such calculations for several fiber configurations in support of
optimal design can lead to prohibitive computational cost. T
objective of this research is to provide a simple, yet reliab
method of assessing various fiber configurations in a compo
structure with an aim toward identifying that with optimal res
tance to creep failure.

An approximate method is proposed that makes use of a
stitutive model for a creeping, damaging, anisotropic material
troduced by Robinson, Binienda, and Miti-Kavuma@1#. This
model applies to composite structures having a single family
strong fibers embedded in a creeping matrix~i.e., a locally trans-
versely isotropic material!. It incorporates an isochronous dama
function that depends on an invariant specifying the maxim
tensile stress normal to the local fiber-matrix interface. This str
component is identified in Robinson et al.@1# as the principally
damaging traction in a continuous fiber, metal-matrix compo
material. Here, we assert that this stress component is simi
damaging for any strongly reinforced creeping composite w
long or continuous fibers, including glass and carbon fib
reinforced polymers~GFRP and CFRP!.

Instead of using the constitutive law of Robinson et al.@1# in a
detailed analysis of creep and creep damage of a given comp

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ja
12, 1999; final revision, Aug. 1, 2000. Associate Editor: I. M. Daniel. Discussion
the paper should be addressed to the Editor, Professor Lewis T. Wheeler, Depa
of Mechanical Engineering, University of Houston, Houston, TX 77204-4792,
will be accepted until four months after final publication of the paper itself in
ASME JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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structure, it is used in bounding the rupture time as propo
earlier by Leckie and Wojewodski@2#, Goodall and Cockroft@3#,
Ponter@4#, and Robinson and Wei@5#. Upper bounds on the rup
ture time are found by considering an imaginary structure, ide
cal in shape and fiber configuration to that of the real one un
consideration and subjected to the same loads. The material o
fictitious structure is nondamaging and perfectly-plastic with
yield function that coincides with the isochronous damage fu
tion of the actual damaging material, i.e., of the Robinson et
@1# model. The bound calculation requires only the determinat
of a ~time-independent! limit-load solution for the imaginary
structure under the given loads, circumventing a detailed anal
of the time-dependent failure process in the actual damag
structure.

Following Robinson and Wei@5#, a global representative failure
stress is calculated based on the upper bound on failure time.
is computed for each fiber configuration of interest in a compo
structure; the configuration with the smallest representative fai
stress has, relatively, the best creep failure resistance. Of co
this amounts to comparing various fiber configurations on the
sis of upper bounds on their failure time. Ultimately, this must
corroborated experimentally.

Application of the present method is made to a thick-wall
cylindrical pressure vessel under interior pressure; we comp
two fiber orientations, circumferential and axial. As expected
tuitively, circumferential fiber orientation is ‘‘optimal,’’ i.e., the
better of the two configurations examined.

Constitutive Equations—Creep Damage
As the proposed method is based on the constitutive mode

Robinson et al.@1#, we begin by stating its essential features r
lating to the present work. Consider a composite structure hav
long or continuous fibers in a creeping matrix material~Fig. 1!.
The strong fibers generally vary in direction throughout the str
ture; the fiber direction at each point is denoted by a unit vec
field di(xk). A symmetric orientation tensorDi j 5didj is defined
as in earlier work, cf., Spencer@6#, Rogers@7#, Robinson and
Duffy @8#, and Robinson et al.@1#.

The composite material is considered pseudo-homogeneous
transversely isotropic with its overall properties discernible
experiment; it is elastic, nonlinear viscous~creeping! and creep
damaging. The constitutive relations for creep and creep dam
are
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«̇ i j
c

«̇o
5fn

]f

]~s i j /so!

1

c n (1)

ċ52
1

~p11!to
Dn

1

c p (2)

in which s i j is the~Cauchy! stress,«̇ i j
c is the creep rate of defor

mation, so is a reference stress chosen in the stress rang
interest and«̇o ,n,p,to andn are material constants obtained fro
uniaxial, transverse creep rupture tests at a given temperature
Robinson et al.@1#. The scalarc is the material continuity
~Kachanov@9#!; it equals unity for a material element entire
intact and zero for an element having lost load-carrying capa
entirely.

The stresss i j and material orientationDi j enter through the
functions f and D defined in Robinson et al.@1#. As we are
principally concerned with creep failure, the flow functionf is
not of immediate interest and will not be restated here. The
chronous damage functionD is

D~s i j ,Di j !5
N

so
(3)

in which

N~s i j ,Di j !5 K 1

2
~J12Jo!1ATL (4)

where the angular brackets in~4! are the Macaulay brackets.
The invariants contained in~4! are defined as follows:

J15s i i Jo5Di j s j i J25
1

2
si j sj i

(5)

I 5Di j sji I o5Di j sjkski T5J21
1

4
I 22I o .

si j are the components of the deviatoric stress.
Physically, the invariantT in ~5! is the square of the maximum

transverse shear stress at material element in the structure.N in ~4!
represents the maximum transverse tensile stress, i.e., the m
mum tensile stress normal to the local fiber-matrix interface.

Global Structural Damage
The structural problem of concern is illustrated in Fig. 1. T

structure is fixed over part of its bounding surfaceSU and loaded
with tractions Ti(xk ,t) over the portionST . The tractions are
supposed to be applied relatively abruptly and held constant th
after. The conditions are isothermal with the ambient tempera
in the creep range of the matrix material.

Fig. 1 Structure with strong reinforcement fibers
214 Õ Vol. 68, MARCH 2001
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At time t local failure occurs at a point~or points! in the struc-
ture wherec→0. A damage front spreads from this point occ
pying a volumeVD ~Fig. 1! at time t.t. V85V2VD designates
the portion of the structure that can sustain stress at timet.t.

As in Leckie and Wojewodski@2# and Robinson and Wei@5#,
we introduce a global damage measure based on the Kach
continuity c, i.e.,

C5
1

V E
V
c p11dV (6)

which has the properties,C51 for an undamaged structure an
C50 for a failed structure.

We note that asc50 in VD

E
V8

c p11dV5E
V
c p11dV (7)

for all t.
Using ~2!, we write the rate of global damage as

2
dC

dt
5

1

toV E
V
Dn~s i j ,Di j !dV (8)

where the constantto is the time to rupture under the referenc
transverse tensile stressso , cf. Robinson et al.@1#.

Integrating ~8! over 0→t while C varies from 1→C, there
results

C~ t !512
1

t0
E

0

tF 1

V E
V
Dn~s i j ,Di j !dVGdt (9)

wheres i j (xk ,t) is the ~redistributing! stress field at timet.

Bounds on Global Damage-Representative Failure
Stress

Guided by the work of Goodall and Cockroft@3# and Ponter@4#,
we specify a fictitious perfectly plastic material whose yield fun
tion is

F~s i j ,Di j !5Dn2~Y/so!n (10)

whereD is the isochronous damage function~3! of the real mate-
rial andY is a uniaxial yield stress in transverse tension. As e
lier, so is a transverse reference stress.

The flow law for the fictitious perfectly-plastic material is

«̇ i j
P

«̇o
5l̇Dn21V i j ; if F50 and V i j ṡ i j 50 (11)

«̇ i j
P

«̇o
50; if F,0 or F50 and V i j ṡ i j ,0 (12)

in which l̇.0 and

V i j 5
]D

]~s i j /so!

5
1

2
~d i j 2Di j !1

1

2AT
Fsi j 1

1

2
~Di j 1d i j !2D jkski2DkisjkG .

(13)

For the given tractionsTi on ST of the fictitious ~and real!
structure,Y is chosen so thatTi[Ti

L is the limit load for the yield
condition~10!. Note thatY can be inhomogeneous, i.e., a functio
of position.

At the limit load Ti
L , the limit stress fields i j

L in the fictitious
structure is constant~time-independent! in VP , that part of the
volume V in which plastic flow occurs. The strain rate inVP is
Transactions of the ASME
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fully plastic, compatible and related tos i j
L through~11!–~13!. The

remaining part of the volume is rigid withDn,(Y/so)n and «̇ i j
P

50.
We assume that the isochronous failure surfacesD5const. are

convex in stress space, cf., Robinson et al.@1#.1 As D in ~3!–~4! is
homogeneous of degree one in stress,Dn is a similarly convex
and, by definition

Dn~s i j
a ,Di j !2Dn~s i j

b ,Di j !2
]

]s i j
Dn~s i j

b ,Di j !~s i j
a 2s i j

b !>0

(14)

for any two stress statess i j
a ands i j

b . We identifys i j
a 5s i j in ~14!

as the stress field in the actual solution of the real structure.
take s i j

b 5s i j
L as the limit load stress field in the fictitious stru

ture. With these identifications made, multiplying~14! by l̇.0
and integrating overVP we obtain

E
VP

Dn~s i j ,Di j !dV>E
VP

Dn~s i j
L ,Di j !dV (15)

where the contribution from the third term in~14! vanishes by the
theorem of virtual work, inasmuch as both of the statically adm
sible stress fieldss i j

a and s i j
b are in equilibrium with the same

tractions onST . Further, asDn>0, we can rewrite~15! as

E
V
Dn~s i j ,Di j !dV>E

VP

Dn~s i j
L ,Di j !dV. (16)

Using ~16! and recognizing the time-independence ofs i j
L , ~9!

becomes

C~ t !<12
t

to
F 1

V E
VP

Dn~s i j
L ,Di j !dVG . (17)

In the creep failure limit,t→tR asC→0, ~17! gives

tR

to
<

1

1

V E
VP

Dn~s i j
L ,Di j !dV

5
tU

to
5

1

S sR

so
D n . (18)

In ~18! we denote the upper bound on the rupture timetR as tU .
Consistent with~2!, we identify sR as the representative failur
stress, i.e., the uniaxial transverse tensile stress having the fa
time tU , that is

sR

so
5F 1

V E
VP

Dn~s i j
L ,Di j !dVG1/n

. (19)

Application of the method requires the representative fail
stress~19! to be calculated and compared for various fiber co
figurations in a given structure. That having the smallest repre
tative failure stress is the optimal fiber configuration. Althou
relating only to upper bounds on the actual failure time, we as
that this method provides a meaningful comparative measur
the resistance to creep failure of the different fiber configuratio

Application—Thick-Walled Cylinder
As an example problem we choose a fiber-reinforced thi

walled cylinder under interior pressurep. The associated desig
problem may be stated as: What is the configuration of a sin
family of fibers~with other features essentially constant, e.g., fib
density, temperature, etc.! that leads to the longest creep ruptu
time of the cylinder for a given pressurep?

A direct approach to answering this question would be
choose several fiber configurations, and for each, conduct a

1It is known from experiment thatD5const. surfaces are generally convex
stress space. Specifically, for the pseudo-homogeneous, highly anisotropic cla
materials addressed here, such experimental evidence is not definitive. Experi
regarding the question of convexity are in progress.
Journal of Applied Mechanics
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numerical, incremental structural analysis allowing for redistrib
tion of stress as the damage region spreads throughout the c
der and accounting for near singular response resulting f
Kachanov-like creep damage evolution~cf. Zienkiewicz and Tay-
lor @10#!. Thus determining the time to failure for each fiber co
figuration, the ‘‘optimal’’ configuration is that having the greate
failure time. Note that in order to conduct these complete so
tions, we must have the creep/creep rupture behavior fully ch
acterized, viz.,~1!–~5!, as well as the anisotropic elastic behavio
The direct approach can require substantial material characte
tion and computing time.

In applying the proposed approximate technique we may si
larly choose several fiber configurations, and for each, determi
representative failure stresssR using~19!. This requires finding a
~time-independent! limit load stress fields i j

L for each fiber ar-
rangement. That configuration having the smallestsR is ‘‘opti-
mal.’’ Here, for illustrative purposes we shall compare only tw
fiber-reinforcement configurations in the cylinder, circumferent
and axial. In each case the limit load stress fields are relativ
easily found. For off axis reinforcement of the cylinder and
more general structural problems, the determination of the li
load stress fields i j

L can also be relatively difficult. Numerica
~finite element! methods have been developed and are availa
for solving the limit analysis problem, cf., Zienkiewicz and Tayl
@10#.

We now apply the proposed technique to a thick-walled cyl
der under interior pressurep. The cylinder has closed ends wit
inner and outer radii denoted bya andb, respectively~Fig. 2!. In
terms of the cylindrical coordinates (z,u,r ) of Fig. 2, the nonzero
stress components are

sz ,su and s r . (20)

The cylinder is taken to be in a condition of generalized pla
strain, i.e.,«̇z5const. The equilibrium equation relatingsu ands r
is

d

dr
~rs r !5su . (21)

That for axial equilibrium, involvingsz , is

pa2p5E
a

b

sz2prdr . (22)

The compatibility equation is

n
ss of
ents

Fig. 2 Thick-walled cylinder under interior pressure „a… cir-
cumferential reinforcement, „b… axial reinforcement
MARCH 2001, Vol. 68 Õ 215
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dr
~r «̇u!5 «̇ r (23)

and the boundary conditions are

s r~a!52p and s r~b!50. (24)

The constitutive equations for the imaginary, nondamaging, p
fectly plastic material are~10!–~13!.

Circumferential Reinforcement. We first consider a circum-
ferentially reinforced cylinder~Fig. 2~a!!. The components of the
orientation tensor are

D22[Du51 otherwiseDi j 50. (25)

Calculating the relevant invariants in~5!, we determineD from ~3!
andV i j from ~13!, i.e.,

D5
sz

so
and V i j 5F 1 0 0

0 0 0

0 0 0
G . (26)

We now construct a statically admissible stress fields i j
L consis-

tent with a lower bound on the limit load for the fictitious plast
cylinder. The stress componentssu

L(r ) ands r
L(r ) cannot be found

uniquely; they are only required to be statically admissible, i
any forms satisfying equilibrium~21! and the boundary condition
~24!.

For the axial stress component we take

sz
L5

p

S b

aD 2

21

(27)

which satisfies the equilibrium Eq.~22!. Further, we take the yield
stressY as

Y5sz
L5

p

S b

aD 2

21

. (28)

Thus, s i j
L 5(sz

L ,su
L ,s r

L) constitutes a lower bound stress fiel
i.e., it is statically admissible, and through~28! and ~26! satisfies
the yield condition~10!.

Using the flow law~11!, we calculate the plastic strain rate fie
«̇ i j

P associated with the lower bound stress fields i j
L . There results

«̇z
P

«̇o
5l̇S sz

L

so
D n21

; «̇u
P5 «̇ r

P50. (29)

This satisfies the compatibility Eq.~23! identically. Further, with
l̇5const. in ~29! the generalized plane strain condition«̇z

5const. is satisfied. With these conditions met,s i j
L qualifies as the

limit load stress field for the fictitious perfectly-plastic cylind
having a yield stressY given by ~28!.

Recognizing thatVP5V, we calculate the representative failu
stress for circumferentially oriented fibers from~19!, i.e.,

sRC5
p

S b

aD 2

21

. (30)

Axial Reinforcement. Next, we consider axial reinforcemen
~Fig. 2~b!!. Now, the components of the orientation tensor are

D11[Dz51 otherwiseDi j 50. (31)

Evaluating the appropriate invariants in~5! leads toD andV i j as
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D5
su

so
and V i j 5F 0 0 0

0 1 0

0 0 0
G . (32)

Following a similar procedure as that for circumferential re
forcement, we construct a statically admissible stress fields i j

L .
We take

s r
L~r !5pF S a

r D 1/~n21!

S b

aD ~n22!/~n21!

21

1

S a

r D
S a

bD ~n22!/~n21!

21
G (33)

and

su
L~r !5pF S n22

n21D
S b

aD ~n22!/~n21!

21
G S a

r D 1/~n21!

. (34)

These are easily shown to satisfy the equilibrium Eq.~21! and the
boundary conditions~24!. The stress componentsz

L(r ) is not de-
termined uniquely; it can assume any form satisfying the equi
rium Eq. ~22!.

Now, we take

Y~r !5su
L~r !5pF S n22

n21D
S b

aD n22/n21

21
G S a

r D 1/n21

(35)

as the~inhomogeneous! uniaxial yield stress of the fictitious plas
tic material.

Thus, as before,s i j
L 5(sz

L ,su
L ,s r

L) constitutes a lower bound
stress field, i.e., it is statically admissible and from~34! and ~32!
satisfies the yield condition~10!.

Again using~11!, we calculate the plastic strain rate field«̇ i j
P

associated with the lower bound stress fields i j
L . Thus,

«̇u

«̇o
5l̇S su

L

so
D n21 «̇z

«̇o
5

«̇ r

«̇o
50. (36)

With l̇5const. and using~34!, ~36! satisfies compatibility~23!
and the generalized plane-strain condition«̇z5const. With these
conditions met,s i j

L qualifies as the limit stress field for the imag
nary perfectly-plastic structure. In this case, the fictitious plas
material has an inhomogeneous yield stress given by~35!; under
this choice we again recognizeVP5V.

As earlier, we use~19! to calculate the representative failur
stress, giving

sRA5pF 2

S b

aD 2

21G 1/nF S n22

n21D
S b

aD ~n22!/~n21!

21
G ~n21!/n

. (37)

The better fiber configuration in terms of creep failure res
tance is the smaller of~30! and ~37!. The ratiosRA /sRC is

sRA

sRC
521/nF S n22

n21D S b

aD 2

21

S b

aD ~n22!/~n21!

21
G ~n21!/n

. (38)

This ratio is plotted in Fig. 3 versus the material parametern for
specified ratios of outer to inner radius of the cylinderb/a. Evi-
dently, assRA /sRC.1, circumferential reinforcement is the be
ter fiber arrangement. Figure 3 exemplifies the convenience of
Transactions of the ASME
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representative failure stress as a measure of creep rupture
tance; the ratiosRA /sRC is virtually insensitive to the exponentn.

Limit ÕThin-Walled Cylinder
We note that the bracketed term in~38! has the thin-walled

limit ( b/a→1)

limb→aF S n22

n21D S b

aD 2

21

S b

aD ~n22!/~n21!

21
G52. (39)

Into ~38! this gives

limb→a

sRA

sRC
52 (40)

for a thin-walled cylinder. This is consistent with the exact so
tion for the thin-walled cylinder, cf., Robinson et al.@1#.

For any homogeneously stressed structure~e.g., the thin-walled
tube! in which the stress field does not undergo redistribution, a
is thus time-independent,~9! becomes

C~ t !512
t

to
Dn. (41)

In the creep failure limitt→tR asC→0, ~41! gives

tR

to
5

1

Dn 5
1

~sR /so!n (42)

thus,

sR

so
5D~s i j ,Di j !. (43)

Evidently, the optimal fiber configuration in a homogeneou
stressed structure is that for whichD is a minimum, or equiva-
lently from ~3!, that for which the invariantN is minimum. Physi-
cally, this is the fiber arrangement that has the least stress no
to the fiber-matrix interface. We conjecture that this fiber config
ration is optimal for fast fracture and fatigue as well as for cre
failure.

Summary and Conclusions
The proposed method is intended to serve as an early de

tool in which a representative failure stress, based on an u

Fig. 3 Ratio of representative failure stresses sRA ÕsRC versus
n for various b Õa
Journal of Applied Mechanics
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bound on creep failure time, is calculated and compared for v
ous configurations of a single family of fibers in a creeping co
posite structure. Upon comparing various fiber arrangements,
having the smallest representative failure stress is the opt
choice. The present method avoids potentially costly deta
analyses of the actual creep/creep rupture process for diffe
fiber configurations. It requires the calculation of only a tim
independent limit load solution of a fictitious perfectly plast
structure having the actual geometry, fiber configuration a
given loads.

An application is made comparing axial and circumferent
fiber configurations in a pressurized thick-walled cylinder. As
tuitively expected, circumferential fiber orientation is found to
‘‘optimal’’ in creep rupture resistance. The results are examin
for the limiting case of a thin-walled cylinder and shown to
consistent with an exact solution obtained earlier in Robins
et al. @1#.

The best fiber arrangement for creep failure resistance in a
mogeneously stressed structure, where no stress redistributio
curs, is identified as that having the least value of the invarianN,
viz., that with the least tensile stress normal to the local fib
matrix interface. It is conjectured that the same fiber arrangem
likewise may be optimal relating to fast fracture and fatigue.

An earlier paper by Robinson and Wei@5# addresses a compa
rable bounding method in which the fictitious structure is cons
ered nondamaging and viscous with a dissipation potential fu
tion that coincides with the isochronous damage function of
actual damaging material. The bound calculation in that case
quires only the determination of a~time-independent! steady-state
solution for the imaginary viscous structure. Similarly, this avo
a detailed calculation of the actual time-dependent failure proc

As the representative failure stress is based on an upper b
on the failure time, its applicability as a comparative measure
assessing optimal fiber orientations needs to be verified exp
mentally. An experimental program addressing this and other f
damental features related to this research is currently in prog
under funding provided by the National Science Foundation.

The class of structures addressed in this paper is of prac
interest in its own right. Moreover, the work admits an extens
to structures of particular interest, having two or more families
strong fibers~as angle-ply, cross-ply and woven composites!. This
extension is a topic of current research of the authors.
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Determination of Poisson’s Ratio
by Spherical Indentation Using
Neural Networks—Part I: Theory
When studying analytically the penetration of an indenter of revolution into an ela
half-space use is commonly made of the fractionEr5E/~12n2!. Because of this, onlyEr
is determined from the indentation test, while the value ofn is usually assumed. Howeve
as shown in the paper, if plastic deformation is involved during loading, the depth-
trajectory depends on the reduced modulus and, additionally, on the Poisson ratio e
itly. The aim of the paper is to show, with reference to a simple plasticity model exhib
linear isotropic hardening, that the Poisson ratio can be determined uniquely f
spherical indentation if the onset of plastic yield is known. To this end, a loading an
least two unloadings in the plastic regime have to be considered. Using finite ele
simulations, the relation between the material parameters and the quantities chara
izing the depth-load response is calculated pointwise. An approximate inverse fun
represented by a neural network is derived on the basis of these data.
@DOI: 10.1115/1.1354624#
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1 Introduction
The knowledge of Poisson’s ratio is of interest when discuss

vibration problems~@1–3#!, evaluating the toughness of compo
ites ~see, e.g.,@4#!, etc. However, especially for foils and films,
has been claimed to be difficult, if not impossible, to determ
the Poisson ratio~@5#!. In case of nanoindentation this difficult
arises from the correlation of the unloading stiffnessS and the
reduced modulusEr . This results from analytical solutions for a
elastic half-space in contact with an indenter of revolution~@6–
8#!.

It is well known that the indentation test can be employed
obtain mechanical properties of materials. For example, one
determine the Young’s modulus~see, e.g.,@9–13#!, by using an
assumed value for Poisson’s ration. Olaf @14# has carried out
elastic-plastic finite element calculations for pyramidal indent
in order to investigate the sensitivity of the so determined value
Young’s modulus with respect to different values ofn. It turned
out thatn has only a minor influence on the determined value
E.

When considering spherical indentation of an elastic-pla
material, the loadP is commonly plotted against the indentatio
depth h. Clearly, for a given material, the response ofP is a
functional of the history ofh. However, for a fixed loading history
~history ofh!, one can regard differenth-P-plots as resulting from
the indentation of materials with different parameters. In ot
words, theh-P-plots may be interpreted as a function of the m
terial parameters involved in the constitutive theory and the
denter geometry. Such a function can be determined pointw
numerically. Generally, a function of the form

P5 P̂~E,n, . . . ! (1)

applies for spherical indentation and given loading history, wh
E denotes the Young’s modulus andn the Poisson ratio.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Divisio
March 26, 1999; final revision, November 1, 2000. Associate Editor: K. T. Ram
Discussion on the paper should be addressed to the Editor, Professor Lew
Wheeler, Department of Mechanical Engineering, University of Houston, Hous
TX 77204-4792, and will be accepted until four months after final publication of
paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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For spherical indentation, the functionP̂ reduces to the simple
form P;E/(12n2), provided the deformation is elastic. How
ever, it cannot be concluded that this relation holds in the cas
elastic-plastic deformation. LetEr denote the reduced modulus
Er5E/(12n2), and supposeP to satisfy a relation of the form

P5 P̄~Er ,n, . . . ! (2)

for the case of elastic-plastic deformations. Then, it is possible
determinen from ~2! in the form

n5 n̄~P,Er , . . . ! (3)

providedP̄ is invertible with respect ton. Note, that the missing
variables in~2! or ~3! are the parameters governing the harden
response and the quantities describing the geometry of
problem.

In the present work, a neural network is proposed to repres
the function n̄. Previous work has shown that the problem
elastic-plastic parameter identification from spherical indentat
data can only be solved sufficiently accurate by using neural
works, if a priori knowledge is used for the formulation of th
input and output quantities of the network~@15,16#!. To this end,
the available analytical solutions for the indentation of an ela
half-space will be discussed in the first step. Then, these solut
will be generalized to the case of elastic-plastic loading in anal
to ~2!. From dimensional analysis of the generalized equatio
dimensionless-dependent quantities can be derived, which re
sent the effects of Poisson’s ratio and the hardening propertie
the material and which are invariant to the associated ela
deformation.

Note that in our paper the assumption is made that the P
son’s ratio remains constant during plastic deformation. This
the case, e.g., for metallic materials which we have in mind.

2 Derivation of the Input Quantities
The solution for elastic contact of nonconforming surfaces

been derived by Hertz@6#. In the case of two elastic solids in
contact, which have a spherical geometry in the contact reg
the relation between the loadP and the approachd of distant
points in the two solids~see@17# p. 93! is given by

P5
4

3
Er* AR* d3, (4)

,
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on,
he
001 by ASME Transactions of the ASME



’

e

s

v

.

-

nt

ng

ata.
ing
where

1

Er*
5

12n2

E
1

12n i
2

Ei
(5)

and

1

R*
5

1

R
2

1

Rs
. (6)

In these relations,E and n are Young’s modulus and Poisson
ratio of the specimen andEi and n i are Young’s modulus and
Poisson’s ratio of the indenter, respectively. The radius of
indenter is denoted byR and the residual surface of the specim
may have a radiusRs at P50 ~see Fig. 1!. Note, that for deriving
~4! the relationRs@R has been assumed.

To describe elastic-plastic deformation behavior, a plastic
law with yield stress at the beginning of plastic flowk0 and linear
isotropic hardening~modulusET! is assumed. Note, that within
this workET denotes the slope of the hardening rule in the pla
strain-stress diagram. The onset of plastic yield during spher
indentation is given forn50.3 by ~see Johnson@17# p. 155!

Py*ªPyun50.35
p3R2

6Er*
2 ~1.6k0!3, (7)

where in deriving this formula use has been made of the
Mises yield criterion. Clearly,~4! applies ford5dy* ,

dy*ªdyun50.3, (8)

as well, wheredy is the value ofd at the beginning of plastic
yield, the corresponding value forP beingPy* :

Py* 5
4

3
Er*AR* dy*

3. (9)

Now suppose the specimen to be plane at the beginning, i.eRs

5` and R* 5R. Solving ~9! with respect tody* and taking into
account~7!, as well asR* 5R,

dy*

R
5S 0.8p

k0

Er*
D 2

. (10)

In the context of spherical indentation, the approachd is given
by

d5h2hr , (11)

whereh denotes the indentation depth andhr represents the re
sidual depth resulting from an inelastic deformation of the spe
men. Using~10! and ~11!, the onset of plastic yield (hr[0) oc-
curs for the first time at the yield depth

hy*

R
5S 0.8p

k0

Er*
D 2

, hy*ªhyun50.3. (12)

Fig. 1 Sketch of the geometry of spherical indentation with
small overall plastic deformation
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By inserting~11! into ~4!, it follows that

P5
4

3
Er* AR* ~h2hr !

3 (13)

and further

P2/35S 4

3
Er* AR* D 2/3

h2S 4

3
Er* AR* D 2/3

hr . (14)

This last equation may be rewritten in the general form

P2/35Mh2B, (15)

where

M5 Hm for elastic loading~0<h<hy!

m* after plastic loading , (16)

B5 H0 for elastic loading~0<h<hy!

b* after plastic loading , (17)

mªS 4

3
Er* ARD 2/3

, (18)

m*ªS 4

3
Er* AR* D 2/3

, (19)

b*ªm* hr . (20)

Next, consider a loading history with loading until a poi
Pt(ht), ht.hy and unloading toP50. By plotting the data in the
form P2/3 againsth, two linear regimes can be considered~see Fig.
2!. The first one holds during loading for 0<h<hy and the sec-
ond linear regime is valid during unloading after plastic loadi
(hr<h<ht). Accordingly, the value ofm can be determined from
the elastic loading (0<h<hy), while the values ofm* and b*
can be obtained from a regression analysis of the unloading d

The variables prescribed by geometry, material and load
process are

~R,ht ,n,Er* ,k0 ,ET!. (21)

Now, suppose the quantities

~m,hy ,Pt ,m* ,b* ! (22)

to be functions of~21!:

m5m̂~R,ht ,n,Er* ,k0 ,ET!, (23)

hy5ĥy~R,ht ,n,Er* ,k0 ,ET!, (24)

Pt5 P̂t~R,ht ,n,Er* ,k0 ,ET!, (25)

m* 5m̂* ~R,ht ,n,Er* ,k0 ,ET!, (26)

b* 5b̂* ~R,ht ,n,Er* ,k0 ,ET!. (27)

Fig. 2 Sketch of a spherical indentation depth-load response
for elastic-plastic deformation
MARCH 2001, Vol. 68 Õ 219
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It is worthy mentioning thatn is assumed to enter explicitly in
~21! and thus on the right-hand sides of~23!–~27!. The quantities
~22! can be calculated as the result of a so-called direct prob
using the finite element method as explained below~see Section
3!.

Relation ~23! is already given by definition~18! so that for
known m, the reduced modulusEr* is known as well. Forn
50.3, the analytical solution for~24! is ~12!. The functionb̂* can
be obtained by a linear combination ofP̂t and m̂* using ~15!–
~17!, ~19!, ~20! provided the point (ht ,Pt

2/3) is known. The Eqs.
~24!, ~25!, and~26!, which indicate an explicit dependency onn,
can be written in dimensionless form. The dimension analy
given in Table 1 implies a rankr 52.

Note thatn57 quantities are related in any of the Eqs.~24!–
~26!. Hence, when writing these equations in dimensionless fo
each of them will involvem5n2r 55 dimensionless quantities
e.g., of the form

P1ª
ht

hy
5P̂1S ht

R
,n,

k0

Er*
,

ET

Er*
D , (28)

P2ª
Pt

2/3

mht
5P̂2S ht

R
,n,

k0

Er*
,

ET

Er*
D , (29)

P3ª
m*

m
5P̂3S ht

R
,n,

k0

Er*
,

ET

Er*
D . (30)

HereP1 denotes the depth related to that depth at which pla
flow occurs for the first time. Forn50.3 we have, by virtue of
~12!,

P1* 5P̂1S ht

R
,0.3,

k0

Er*
,

ET

Er*
D , (31)

5
ht

hy*
5

ht

R

R

hy*
5

ht

R S 0.8p
k0

Er*
D 22

(32)

or

P1* 5P̂1* S ht

R
,

k0

Er*
D . (33)

Now, we assumeP2 andP3 in ~29!,~30! to be dependent onht /R
andk0 /Er* over the functionP̂1* (ht /R,k0 /Er* ), so

P25P̃2S P1* ,n,
ET

Er*
D , (34)

P35P̃3S P1* ,n,
ET

Er*
D . (35)

A motivation for this assumption, based on finite element simu
tions, will be given in Section 3.

In order to interpret the dimensionless quantityP2 , we intro-
duce the total loadPt

(e) for a fictitious elastic loading until the
depthht . According to~15!–~18!,

Pt
~e!
ª

4

3
Er*ARht

35Am3ht
3. (36)

Thus,P2 can be interpreted as the ratio

Table 1 Dimension analysis of elastic-plastic spherical inden-
tation with loading and unloading

R ht n Er* k0 ET m hy Pt m*

@N# 0 0 0 1 1 1 2/3 0 1 2/3
@m# 1 1 0 22 22 22 21 1 0 21
220 Õ Vol. 68, MARCH 2001
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P25S Pt

Pt
~e!D 2/3

. (37)

Using ~19!, ~18!, and~6!, it can be shown that the ratiom* /m and
thereforeP3 may be expressed in terms ofR andRs ,

P35
m*

m
5S 12

R

Rs
D 21/3

, (38)

which represents the residual geometry of the specimen surfa

3 Finite Element Simulations
The finite element mesh is displayed in Fig. 3. It consists

eight-node axisymmetric elements, which turned out to be opti
for solving contact problems with spherical indentation~see@18#!.
The part of the mesh, which is concerned with the contact pr
lem is displayed enlarged on the left-hand side. In order to ach
accurate results for very different sets of material parameters,
refined region should be proportional to the contact radius be
achieved. The contact radius can be estimated for givenP1* by
using ~12! and the assumption of zero piling up.

To minimize the amount of finite element meshs, three differ
sizes of maximum contact areas were defined, as shown in T
2. The edges of the mesh are 1000 mm and the radius of
indenter isR5200 mm. However, the results can be scaled to a
indenter radius by using the PI-theorem.

The constitutive law assumed is an elastic-plastic constitu
model available in ABAQUS~see Hibbit@19#, Section 4.3.2-1!,
based on a von Mises yield function with linear isotropic harde
ing and a flow rule which represents an associated normality r
Other type of constitutive equations like those derived on the b
of the scale invariance approach~@20,21#! can also be employed
but such issues may be taken up in a future study. As alre
mentioned in Section 2, the yield stress is denoted byk0 and the
tangent modulus isET .

For a set of material parameters, which is typical for stee
finite element simulation has been carried out for each mesh.
indenter has been pressed eight times of the yield depth into
material and was unloaded to the half of the total depth. For
material, mesh M2 has the optimum contact discretization. T
resulting depth-load trajectories for the three finite element me
are displayed in Fig. 4.

It can be seen that the loading response for M1 deviates slig
from the curves of M2 and M3 which are nearly coincident. The

Fig. 3 Finite element mesh for spherical indentation with low
loads

Table 2 The three groups of finite element meshs „all lengths
in †mm ‡…

Mesh Element Size Contact Radius Depth Range

M1 0.3906 a,25.00 6.25•1022<ht
M2 0.0977 a,6.25 2.5•1023<ht,6.25•1022

M3 0.0244 a,1.5625 ht,2.5•1023
Transactions of the ASME
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calculations show on the one hand the mesh independency an
the other hand the higher accuracy due to the three discretiza
categories.

Using variableht , n, k0 , andET each argument of the func
tions P̂ i in ~28!–~30! can be chosen independently. Although it
theoretically not necessary, the reduced modulusEr* is chosen
randomly between 50 GPa and 600 GPa for each finite elem
calculation in order to demonstrate that quantitiesP i , and there-
fore n, depend onk0 /Er* and ET /Er* only. Note that~28!–~30!
are functions ofEr* only, and therefore, without loss of generalit
the spherical indenter is modeled in the finite element simulati
as a rigid surface.

Figure 5 shows three finite element simulations, withn being
the only dimensionless quantity that has been changedEr*
5const). The values ofm, hy* , and Py* , indicated in the plot,
have been calculated using~18!, ~12!, and ~7!, respectively. The
good agreement of these analytical values with the numerica
sults shows that the finite element mesh is suitable for mode
the elastic-plastic half-space accurately.

Next, we use finite element calculations to get values forP2
andP3 for given values~21!, which represent pointwise the func
tions ~29! and~30!. As outlined in Huber and Tsakmakis@16#, for
keeping the number of necessary simulations small when trai
neural networks, the parametersn, k0 /Er* andET /Er* have to be
chosen randomly from the given intervals in order to form t
training and test patterns. For the purpose of the present st

Fig. 4 Depth-load trajectories for the the finite element
meshes M1–M3: EÄ200 GPa, nÄ013, k 0Ä250 MPa, ETÄ10 GPa
„aË2.2 mm …

Fig. 5 Examples of finite element simulations for Er*Ä200
GPa, k 0Ä500 MPa, ETÄ20 GPa, h tÄ4h y*
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these intervals are defined as shown in Table 3, from which 1
sets were generated. The values ofP1* at which unloadings are
inserted are chosen in equi-distant steps of 0.5 so that 14 unl
ings are available for each simulation.

Before going any further we will demonstrate thatn effects the
depth-load trajectory explicitly and not only by means ofEr . This
will justify the assumption made thatn appears in~21! explicitly.
To this end the values ofP2 andP3 have been numerically cal-
culated and plotted againstn and ET /Er* for P1* 5const. The
meshed surfaces in Figs. 6 and 7, which are parametrized
P1* , indicate thatP2 andP3 are affected byn. Moreover, these

Fig. 6 The effect of n and ET ÕEr* on P2 for P1*Äconst

Fig. 7 The effect of n and ET ÕEr* on P3 for P1*Äconst

Table 3 Ranges of the dimensionless parameters for the for-
mation of training and test patterns

Parameter Range

P1* @-# 1.5– 8
n @-# 0.1–0.45
k0 /Er* @-# 1025– 1022

ET /Er* @-# 1023– 1021
MARCH 2001, Vol. 68 Õ 221
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results suggest to assumeP2 andP3 as a function ofP1* which is
the motivation for Eqs.~34!, ~35!. In what follows, a neural net-
work will be developed on the basis of~34! and ~35!, which will
represent the solution of the inverse problem, i.e.,n as a function
of P1* , P2 , andP3 .

4 Training of the Neural Networks
Artificial neural networks represent a qualified tool for solvin

complex inverse problems in computational mechanics. An ov
view about some relevant applications is given by Yagawa
Okuda @22# and Sumpter and Noid@23#. A neural network con-
sists of neurons connected with links to a highly parallel structu
Each neuron possesses a local memory and can carry out loca
information processing operations. In general, each neuron
multiple inputs and a single output value to mimic the biologic
brain neuron.

According to the neural network method so-called training p
terns have to be presented to the network. These consist o
input valuesxi and the related desired output valuesdl . The error

el5dl2yl (39)

for each pattern can be computed from the actual outputyl ~see
Fig. 8!.

Using a backpropagation algorithm, the synaptic weightswi j ,
which represent the links between the neurons are adjusted a
priately. This way, the error of the output values is minimized a
the network has been taught the relation between input and ou
values. The mean error for all patterns and outputs is given b

MSEª
1

N

1

L (
n

(
l

~el
~n!!2, (40)

wheren is the pattern number,N is the number of patterns, andL
is the number of output neurons. The neural network simulati
are carried out using the SNNS code@24#. The relevant theory of
backpropagation and preparation of the data in a form approp
for our purposes is described, e.g., in@15,16#.

4.1 One Unloading„Set 1…. Towards determining the Pois
son ration, we regard in~34!,~35!, the quantitiesP1* , P2 , and
P3 to be known. More specifically,P1* is given by material pa-
rameters, whileP2 and P3 are regarded to be determined b
exploiting a loading and an unloading. Thus, we have two eq
tions with two unknowns (n,ET /Er* ). However, these equation
can only be inverted in a satisfactory manner, ifP2 and P3 are
linear independent. By plotting all finite element results ofP2
againstP3 one can observe a strong correlation between th
two quantities~see Fig. 9!, which has the point~1.0,1.0! as origin
for n→0.5 andP1* →1 ~cf. Figs. 6,7!.

From the correlation betweenP2 andP3 arises a lack of infor-
mation which makes difficult to invert the problem numerical
This can be shown by training a neural network, denoted as S
using the input and output definition

~x1 ,x2 ,x3!ª~P1* ,P2 ,P3!, (41)

Fig. 8 Sketch of a multilayer feed forward neural net
222 Õ Vol. 68, MARCH 2001
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The neural network consists of three input neurons, two hid
layers with three and two neurons, respectively, and one ou
neuron. ForP1* <4 data have been established, from which 3
training patterns and 38 test patterns were generated, the tes
terns are chosen randomly from the database. These test pa
are not presented to the neural network during training and ca
used to check the capability of the trained network for unse
patterns.

After 3000 training epochs the MSE value reached 9.6•1024

and 9.0•1024 for training and test patterns, respectively. The v
ues ofñ identified from the finite element data are plotted agai
the exact valuesn in Fig. 10 for training and test patterns. It ca
be seen, that it is possible to determinen only with a comparably
large scatter.

4.2 Two Unloadings„Set 2…. The identification can be im-
proved by adding independent information to the input data of
neural network. This can be done, e.g., by using an additio
unloading. To this end, to each unloading at a depthht,1 a further
unloadinght,2 is considered having the depthP1* uht,2

ª2P1* uht,1
.

Thus a new neural network, referred to as Set 2, has been tra
for which the input data, for given material data, are

~x1 , . . . ,x5!ª~P1* uht,1
,P2* uht,1

,P3* uht,1
,P2* uht,2

,P3* uht,2
!. (43)

Note that the depthsht,1 ,ht,2 together with the material data form
the basis for a pattern. This neural network consists of five in
neurons, two hidden layers with four and three neurons, res
tively, and one output neuron. Again, 375 training patterns and
test patterns were generated with 1.5<P1* uht,1

<4. After the same

duration of 3000 epochs an MSE value of 9.0•1025 for training
and 1.2•1024 for test patterns was achieved. The reidentificati

Fig. 9 Correlation of P2 and P3

Fig. 10 Identification of n on the basis of one unloading
Transactions of the ASME
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results of all finite element simulations are displayed in Fig. 11
can be seen that the identification error is reduced now to
amount which can considered to be caused by the numerical
of the finite element data.

These results illustrate, that two unloadings are able to prov
sufficiently independent information in order to solve the probl
of determiningn with high accuracy when the value ofP1* uht,1

is
known.

Now, assuming for an unloading atht[ht,1 , that onset of plas-
tic yield may occur at everyh̃y* ,ht a relationñ(h̃y* ) can be de-
termined using Set 1 or Set 2. This is plotted in Fig. 12, where
horizontal line (n50.3) and vertical line (h̃y* /hy* 51) indicate the
exact values ofn and hy* , respectively. From Fig. 12 it can b
seen that the correct valuen50.3 is determined by Set 1 and S
2 with good accuracy, ifhy* is known. Note that the curvesñ(h̃y* )
for both, Set 1 and Set 2, indicate the same slope at the p
h̃y* /hy* 51.

5 Conclusions
In the present work some basic issues towards determi

Poisson’s ratio from spherical indentation have been discusse
is shown that the solution for elastic-plastic deformation is su
cient accurate, provided the onset of plastic yield is known. Ho
ever, as shown in Section 4, it must be noted that a slight de
tion from hy* affects the resulting value ofn considerably.

The determination of the exact valuehy* where plastic defor-
mation occurs for the first time, is not trivial. This problem cann
be solved with conventional methods to achieve the accur
needed. Consequently, the value ofn should be determined with
out knowledge ofhy* . To this end, it is necessary to modify th

Fig. 11 Identification of n on the basis of two unloadings

Fig. 12 Dependency of identified Poisson’s ratio ñ„h̃ y* … using
Set 1 and Set 2
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inverse function appropriately in order to decrease the sensiti
corresponding to the onset of plastic yield and thus to make
method more suitable to experiments. The development of suc
inverse function is addressed in@25#.
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Determination of Poisson’s Ratio
by Spherical Indentation Using
Neural Networks—Part II:
Identification Method
In a previous paper it has been shown that the load and the unloading stiffness
among others, explicit functions of the Poisson’s ratio, if a spherical indenter is pre
into a metal material. These functions can be inverted by using neural networks in o
to determine the Poisson’s ratio as a function of the load and the unloading stiff
measured at different depths. Also, the inverse function possesses as an argum
ratio of the penetration depth and that depth, at which plastic yield occurs for the
time. The latter quantity cannot be measured easily. In the present paper some n
networks are developed in order to identify the value of Poisson’s ratio. After prepa
the input data appropriately, two neural networks are trained, the first one being rel
to Set 2 of the previous paper. In order to avoid an explicit measurement of the
depth, the second neural network has to be trained in such a way, that its sol
intersects with that of Set 2 at the correct value of Poisson’s ratio. This allows to ide
Poisson’s ratio with high accuracy within the domain of finite element data.
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1 Introduction
In a previous paper~see Huber and Tsakmakis,@1#!, it has been

shown, that the Poisson’s ratio can be identified from spher
indentation, provided the depth is known where plastic yield
curs for first time. To this end, the dimensionless quantitiesP2
andP3 ,

P2ª
Pt

2/3

mht
, (1)

P3ª
m*

m
, (2)

have been introduced~cf. Fig. 1!. Here,Pt is the maximum load at
the depthht , where the indenter is unloaded.m is defined as the
slope on theh-P-graph for elastic loading (0<h<hy), while m*
denotes the slope on theh-P-graph during elastic unloading afte
loading until (ht ,Pt). Note that in the elastic regimeP251 and
P351.

It has been shown in@1#, that P2 and P3 are functions of
geometry, Poisson’s ration, loading history, and the hardenin
properties

P25P̃2S P1* ,n,
ET

Er*
D , (3)

P35P̃3S P1* ,n,
ET

Er*
D , (4)

where
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ment of Mechanical Engineering, University of Houston, Houston, TX 77204-47
and will be accepted until four months after final publication of the paper itself in
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cal
c-

r

P1*ª
ht

hy*
5

ht

R S 0.8p
k0

Er*
D 22

, (5)

hy*ªhyun50.35RS 0.8p
k0

Er*
D 2

. (6)

~Throughout the paper use is made of the notation introduce
@1#!. The hardening properties are represented by two dimens
less quantitiesP1* andET /Er* . The parameterET is the tangent
modulus related to a linear isotropic hardening rule andEr* is the
reduced modulus, which is composed of the elastic propertie
the specimen and the indenter

1

Er*
5

12n2

E
1

12n i
2

Ei
. (7)

Also, the radius of the indenter is denoted byR andk0 represents
the yield stress at the beginning of plastic flow. In the case
nonlinear hardening, the functionsP̃2 andP̃3 have to be extended
by additional dimensionless hardening parameters. However,
will be shown later, for the purpose of our paper it suffices
model the hardening response by a linear hardening rule.

We recall that some kind of correlation betweenP2 and P3
exists, which does not allow to invert, with sufficiently accurac
the problem with respect ton by using neural networks and onl
one unloading, even ifhy* andm are supposed to be given. How
ever, n can be determined by using neural networks with hi
accuracy under the same suppositions, when at least two unl
ings are used at different depths. The inversion of this prob
has been realized in@1# by employing a neural network, denote
as Set 2. Such a neural network can be trained by using fi
element simulations and is able to approximate a pointwise gi
function. During training, the neural network learns the relati
between input data and the desired output data. In our case
input data are represented by the quantitiesP1* , P2 and P3 ,
while n is the desired output value. For the numerical simulatio
n and ET /Er* have been chosen randomly from the interva
@0.1,0.45# and @1023,1021#, respectively. Note, that the locatio
of the unloadings has been chosen in equidistant steps, so
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P1* P$1.5,2.0, . . . ,8.0%. For more details about the finite eleme
simulations and the training of the neural networks see@1#.

The present paper deals with the extention of the method
identifying n for values ofm and hy* which are not explicitly
given and so to make the method more suitable to experime
Following @1#, we consider unloadings between the depthsht,1

.hy* andht,2.ht,1 . The loading responsePl(h) is regarded to be
known for 0<h<ht,2 and the unloading responsem* (ht) is re-
garded to be known forht,1<ht<ht,2 , both in form of discrete
finite element results.

In Section 2, the value ofm will be determined by a neura
network, which uses data of the loading responsePl(h) only. In
Section 3 two neural networks will be developed, which allow
assign to the discrete loading and unloading dataPl(h) and
m* (ht) continuous distributionsP̃l(h) and m̃* (ht). Neural net-
works represent smooth functions and are able to ignore the
ter in the input data. Thus, the approximated values are physic
meaningful and free of numerical or experimental scatter. As
transition from pure elastic to elastic plastic deformation
smooth the determination of the yield depthhy or, which is the
same, ofhy*ªhyun50.3

is by no means an easy task. To solve th
problem we will utilize two different neural networks. The fir
one is an extended version of Set 2 introduced in@1# and has a
high sensitivity toP1* in the vicinity of hy* ~cf. Fig. 12 in@1#!. In
order to avoid the difficulty to determinen on the basis ofhy* , a
new concept will be followed here. The hypothesis is that
should be possible to train a second neural network, referred t
Set 3, which is almost insensitive toP1* in the vicinity of hy* .
Then, the identifiedh̃y* - ñ-distributions~cf. Section 4.2 in@1#! of
both neural networks will intersect in the point (hy* ,n) where
simultaneously the identification error vanishes. Finally, Sectio
deals with the verification of the method developed. It will
shown that the results are insensitive to nonlinear hardenin
well as to the location of the unloadings.

2 Determination of m
In order to determinem, without knowinghy , a neural network

will be used, were the input data are restricted to values of
loading response at different depths.

The input definition consists of a sequence of dimension
load ratios

xiªS P̄l~hi !

Pl~ht,1!
D 2/3

, hiª
i

10
ht,1 , i 51 . . . 9, (8)

whereht,1.hy* is the depth at which the first unloading is ava
able. When identifying the value ofn from experimental data the
yield depthhy* is not supposed to be known. Therefore, wh
training the network, the depthht,1 is chosen randomly in the
interval ht,1P@1.5hy* ,4.0hy* # for all patterns. For the purposes o
this section it suffices to determine the input loading dataP̄l(hi)

Fig. 1 Sketch of a spherical indentation depth-load response
for elastic-plastic deformation
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by linear interpolating the dataPl
2/3(h), which are given in dis-

crete form, since the dataPl(h) are discrete. The reason for usin
linear interpolated loading dataP̄l(hi) in ~8! arises from the fact
that the neural network for determiningm is not sensitive to these
data.

The output value is defined by the dimensionless quantity

yªm
ht,1

Pt,1
2/3, (9)

where the slopePt,1
2/3/ht,1 acts as an estimate ofm in order to

minimize the range of values fory. For all training patternsy
P@0.99617,1.28209#. Note, that valuesy,1 are theoretically not
possible and reflect the numerical error of the finite element sim
lation. The exact value of the slopem is calculated analytically by

m5S 4

3
Er* ARD 2/3

. (10)

The creation of all patterns~see@1#! is based on~10!, so that the
neural network learns to ignore scatter due to numerical errors
addition, the fit of the data is avoided, which would be a furth
source of uncertainties.

The neural network consists of nine input neurons, one ou
neuron as well as six and three neurons in the two hidden lay
After 2000 epochs, the 407 training and 43 test patterns reac
an MSE value of 9.7•1026 and 6.5•1026, respectively. The quick
training and the very low MSE values indicate an excellent de
mination ofm by the neural network. This is proved by plottin
the identified valuesmid against the analytical valuesm given by
~10! in Fig. 2.

3 Neural Networks for the Loading Data and the
Slopes During Elastic Unloadings

In this section, two neural networks are provided, which will
used to prepare the input data for identifyingn. When determining
the value ofn in Section 4, the used neural networks will b
sensitive with respect to the input loading data as well as the in
data concerningm* . In this case it has been proved to be useful
work with P̃l(h) and m̃* (ht) as input data. The distribution
P̃l(h) andm̃* (ht) are smooth and are obtained by approximati
~in mathematical sense! via neural networks the discrete da
Pl(h) andm* (ht).

3.1 Determination of P̃l
2Õ3. In establishing the distribution

P̃l
2/3(h) the input definitions in the neural network, in analogy

the last section, read

Fig. 2 Accuracy of the identified slope m id
MARCH 2001, Vol. 68 Õ 225
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xiªS P̄l~hi !

Pl~ht!
D 2/3

, hiª
i

10
ht , i 51 . . . 9, (11)

x10ª
h

ht
, (12)

where hP@0,ht# denotes that depth at which the load value
needed. The maximum depthht is allowed to be in the interva
htP@1.5hy* ,8.0hy* #. The output definition is

yªS P̃l~h!

Pl~ht!
D 2/3 ht

h
. (13)

Again, due to the choice ofy, the range of possible values is in
small interval yP@0.984,1.287#. This allows an approximation
with a very high accuracy. The neural network consists of
input neurons, one output neuron as well as eight and four neu
in the first and second hidden layer, respectively. The MSE va
after 2000 epochs was 1.0•1024 and 4.8•1025 for 892 training
and 92 test patterns, respectively. An example of the very g
approximation is shown in Fig. 3.

3.2 Determination of m̃* . For determining the unloading
datam̃* (ht), we defineht,1 andht,2 to be the depths at which th
first and the last unloading is carried out, respectively. The co
sponding unloading slopes are denoted bym1*ªm* (ht,1) and
m2*ªm* (ht,2). Again, the input values are given by equidista
linear interpolation of the numerical data

xiª
m̄* ~hi !2m1*

m2* 2m1*
, hiª

i

10
~ht,22ht,1!1ht,1 , i 51 . . . 9,

(14)

x10ª
ht2ht,1

ht,22ht,1
. (15)

Here,m̄* (hi) represent the slopes obtained by linear interpolat
the discrete valuesm* (ht), andhtP@ht,1 ,ht,2# denotes that depth
at which the value ofm* is needed. The maximum depthht,2 for
the training patterns is in the intervalht,2P@4hy* ,8hy* # while the
minimum depthht,1 is always given by the location of the firs
unloading. The output is defined by

yª
m̃* ~ht!2m1*

m2* 2m1*
. (16)

The neural network consists of ten input neurons, one output n
ron as well as eight and four neurons in the first and sec
hidden layer, respectively. The MSE value after 2000 epochs

Fig. 3 Comparison of the P̃l„h … distribution with the Pl„h … fi-
nite element method „FEM… data
226 Õ Vol. 68, MARCH 2001
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3.8•1026 and 4.5•1026 for 2805 training and 258 test pattern
respectively. Figure 4 demonstrates the capabilities of the ne
network used. The minimization of the numerical scatter by
filtering of the neural network is visible at those points where
finite element results deviate from the continuous line.

4 Identification of n and hy*
The neural networks Set 1 and Set 2 in@1# are based on the

assumption that the yield depth is known explicitly. However, t
onset of plastic yield cannot be determined with the necess
accuracy from the loading data since the transition from pure e
tic to elastic plastic deformation is not marked. In order to avo
such difficulties, a further neural network will be created. Here,
contrast to Set 1 and Set 2, the input data of this neural netw
denoted as Set 3, will not make use explicitly from the value
P1* .

4.1 Retraining of Set 2. The patterns of Set 2 in@1# were
restricted to the exact locations of the unloadings available fr
the finite element simulations. By using the networks of Section
the unloading data are available at any depth between the first
last unloading. Thus, it is convenient to retrain the network Se
with a random depthht,1 in order to achieve best possible gene
alization. Also, in order to make the neural network more rob
for practical problems, an additional third unloading is used
tween the two original unloadings. The so obtained neural n
work for determining the value ofn represents the first neura
network, mentioned in the Introduction 1, which indicates a h
sensitivity toP1* in the vicinity of hy* .

The modified input definition is then

x1ªP1* uht,1
(17)

x2 . . . x4ªP2uht
, ht51.0ht,1 , 1.5ht,1 , 2.0ht,1 , (18)

x5 . . . x7ªP3uht
, ht51.0ht,1 , 1.5ht,1 , 2.0ht,1 , (19)

whereht,1 is allowed to be in the intervalht,1P@1.5hy* ,4.0hy* #.
The neural network consists now of seven input neurons,

hidden layers with five and three neurons, respectively, and
output neuron. Now, 449 training patterns and 46 test patte
were generated. After a duration of 3000 epochs a MSE valu
1.0•1024 and 6.8•1025 has been achieved for training and te
patterns, respectively. Here, the test patterns display the do
precision compared to@1# indicating the minimization of the scat
ter by the filtering and the increased reliability due to the th
unloading.

Fig. 4 Comparison of the smooth m̃ * „h t…-distribution with the
m * „h t… finite element method „FEM… data
Transactions of the ASME
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4.2 Training of Set 3. We recall ~see end of Section 3 in
@1#! that n can be thought of as a function ofP1* , P2 , P3 , i.e,

n5g~P1* ,P2 ,P3! (20)

or

n2g~P1* ,P2 ,P3!5: f ~P1* ,P2 ,P3 ,n!50. (21)

In view of ~3!–~5!, the latter becomes

f S ht

hy
U

n50.3

,P̃2S ht

hy
U

n50.3

,n,
ET

Er*
D ,P̃3S ht

hy
U

n50.3

,n,
ET

Er*
D ,n D 50

(22)

or

f S ht

hy*
,P̃2S ht

hy*
,n,

ET

Er*
D ,P̃3S ht

hy*
,n,

ET

Er*
D ,n D 50. (23)

Now, our aim is to obtain from Eq.~23! a relation of the form

n5n5 ~ h̃y* !, (24)

where h̃y* is defined below. To this end we first consider a s
quence of indentation depths

ht, jª
j 11

2
ht,1 , j 51, . . . ,n, (25)

ht,1ª2hy* . (26)

Theoretically, it suffices to consider Eq.~23!, e.g., atht5ht,1 ,
ht5ht,25

3
2ht,1 and ht5ht,352ht,1 in order to eliminateET /Er*

andhy* and so, by using a neural network, to obtain the value on
for the given valueht,1 . However, in order to increase the acc
racy of the neural network developed, Eq.~23! has been exploited
at n55 indentation depthsht,1 , ht,253/2ht,1 , . . . ,ht,553ht,1 .

Evidently, one may use this approach forht,1P@2hy* 2e,2hy*
1e#, wheree is a small positive real number, and so to establi
by using an appropriately trained neural network, referred to
Set 3, a function of the form

n5 n̄~ht,1!. (27)

On the other hand, one may interpret, on the basis of Eq.~23!, a
variation of ht,1 as a variation ofhy* . Thus, by settingh̃y*
5ht,1/2 in ~27!, we have

n5 n̄~2h̃y* !5..n5 ~ h̃y* !, (28)

with n5 in ~24! and ~28! being understood as the same function
In training Set 3, one has to evaluate, for given material d

ET /Er* , the values ofP2 andP3 at prescribedht . These values
are obtained from finite element results by using Eqs.~1!, ~2! and
represent the input data for Set 3, the output quantity beingn.
Note that in a training pattern the number ofP2-inputs must not
necessarily be equal to the number of theP3-inputs. Thus the
definitions, which produced the best results, are for givenET /Er*

x1 . . . x3ªP2uht5h , h50.5h̃y* ,1.0h̃y* ,1.5h̃y* , (29)

x4 . . . x8ªP2uht5h , h52h̃y* ,3h̃y* , . . . ,6h̃y* , (30)

x9 . . . x13ªP3uht5h , h52h̃y* ,3h̃y* , . . . ,6h̃y* . (31)

The 443 training and 48 test patterns were generated by using
randomly chosen valuesh̃y* for each finite element simulation
After 45,000 epochs an MSE value of 9.5•1025 for training and
8.9•1025 for test patterns has been achieved.

5 Results and Discussion
The characteristic of Set 3 is shown in Fig. 5 for the sa

example as depicted in Fig. 12 in@1#. Actually, the neural network
Journal of Applied Mechanics
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Set 3 displays an insensitivity onh in the vicinity of hy* , which is

visible as a plateau. From the intersection of the curvesñ(h̃y* ) and

n5 (h̃y* ), the values ofn and the value ofhy* can be determined
simultaneously.

In the following, this identification method will be applied to a
patterns in order to give an impression about the theoretical
proach. Next, the sensitivity of the results will be checked w
respect to different nonlinear hardening rules as well as differ
unloading locations.

5.1 Linear Hardening. Using the identification method de
scribed above, the values ofn andhy* are determined for all avail-
able finite element simulations including the test patterns~see
Figs. 6 and 7!. Since the test patterns do not coincide for t
different neural networks, training and test patterns are not dis
guished in the graphs. From the 94 examples displayed in Fig
high accuracy can be observed, where 95 percent of the re
possess an error less than 5 percent. The successful identific
is confirmed as well by the excellent accuracy of the identifiedhy*
values, displayed in Fig. 7.

5.2 Nonlinear Hardening. So far the identification method
is developed for the case of a linear hardening response. Howe
since the indentation depths required by the method are of
order of the yield depth it is natural to expect that, when det
mining the value ofn for a material with nonlinear hardening
only the slope of the hardening response at the beginning of p

Fig. 5 Simultaneous identification of Poisson’s ratio n and h y*
as intersection of Set 2 and Set 3

Fig. 6 Accuracy of the identified Poisson’s ration n
MARCH 2001, Vol. 68 Õ 227
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tic yield will be important. To demonstrate this, some finite e
ment simulations have been carried out, where a hardening r

k̇5~g2b~k2k0!!ṡ (32)

is assumed. In Eq.~32! k denotes the isotropic hardening variab
For more details on the constitutive equations see Huber
Tsakmakis@2,3# and the literature cited there. Note, that~32! re-
duces to linear hardening forb50 and g5ET . For b.0, the
initial slope of the hardening rule is given byg while k01g/b is
the limit of isotropic hardening.

In Fig. 8 one-dimensional strain-stress distributions are d
played for E5210 GPa,n50.3, k05250 MPa, andg510 GPa.
Four different hardening rules are considered, where the har
ing limit is successively decreased from infinite~linear hardening!
to 5 MPa. The resulting depth-load trajectories are displayed
Fig. 9.

In the depth range ofht /hy* <8, considered, only the depth-loa
trajectory forg/b55 MPa deviates slightly from the other traje
tories with higher hardening amount. The displayed depth-l
trajectories are generated by using the same unloading loca
as for all training patterns, i.e.,ht /hy* 51.5,2.0, . . . ,8.0 and are
denoted by Type 1. Another type of depth-load trajectories,
noted as Type 2 has been generated with the locations of
unloadings atht /hy* 51.75,2.25, . . . ,7.75. By using the Type 2
samples, the approximation capabilities of the neural netwo
can be checked with respect to the location of the unloadings

First it can be seen from Table 1, that the value ofm is identi-
fied with an excellent accuracy and is not affected by the non

Fig. 7 Accuracy of the identified yield depth h y*

Fig. 8 Stress-strain curves for linear hardening and different
nonlinear hardening rules
228 Õ Vol. 68, MARCH 2001
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ear hardening or the location of the load increments. This rob
ness is necessary for the following identification sincem is needed
for making other quantities non-dimensional.

Next, the eight verification examples will be used to discuss
sensitivity of the interpolation networks as it has been indicated
Section 3. To this end, the neural network Set 3 has been tra
by three different data sets. In the first case~LL !, the loading data
as well as the unloading data are created by linear interpolation
the second case~LN!, the loading data have been prepared
linear interpolation while the unloading data have been de
mined by using a neural network~see Section 3.2!. In the third
case~NN!, the loading data as well as the unloading data
determined by neural networks~see Section 3.1, 3.2!. From each
database a different neural network Set 3 has been trained u
the same conditions, where the training of Set 3 for case~NN! is
described in Section 4.2.

The identified values ofhy* andn for all eight verification ex-
amples are given in Table 1. These results for case~NN! show
that there is only a very weak but systematic effect for increas
nonlinearity on the identified value ofn. From linear hardening to
almost ideal plasticity, the determined Poisson’s ratio increase
approximately 0.5 percent. No effect can be observed in rela
to the unloading locations.

If the loading response is interpolated linear~LN!, the values of
n for Type 1 are slightly higher while for Type 2 they are slight
smaller. Here we find a remarkable difference between Typ
and Type 2 examples~i.e., an effect to the location of the unload
ings!, but no significant effect with respect to nonlinear hardeni

Fig. 9 Depth-load trajectories according to the hardening
rules displayed in Fig. 8

Table 1 Identification of additional verification patterns. Four
different model-materials according to Fig. 8 have been consid-
ered, which differ with respect to the hardening response. The
four model-materials exhibit common elasticity data, onset of
plastic yield and slope of the hardening response at onset of
plastic yielding: mÄ26.65 N2Õ3 mmÀ1, h y*Ä1.48 mm, nÄ0.3.

Type
b

@2#
m

@N2/3 mm21#

Set 3~LL ! Set 3~LN! Set 3~NN!

hy*
@mm#

n
@2#

hy*
@mm#

n
@2#

hy*
@mm#

n
@2#

1 0 26.61 1.77 0.175 1.49 0.303 1.49 0.29
1 20 26.60 1.64 0.235 1.49 0.302 1.49 0.30
1 200 26.60 1.49 0.311 1.48 0.312 1.48 0.30
1 2000 26.61 1.46 0.320 1.46 0.319 1.47 0.31
2 0 26.61 1.62 0.241 1.53 0.284 1.50 0.29
2 20 26.61 1.63 0.238 1.53 0.286 1.49 0.30
2 200 26.61 1.50 0.302 1.52 0.292 1.49 0.30
2 2000 26.62 1.43 0.334 1.50 0.303 1.49 0.31
Transactions of the ASME
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For linear interpolation of the loading as well as the unload
data ~LL ! a strong effect of the nonlinear hardening can be
served, so that the determined value ofn increases for increasing
nonlinearity.

6 Conclusions
In the present paper a method for identifying the Poisson’s r

is proposed, where no information about the yield depth is s
posed to be given. This has been realized by training two ne
networks which possess a different sensitivity in the point wh
the identification error vanishes.

An exceptional point of the method developed is that neit
any property of the spherical indenter nor one of the specimen
to be known. The only suppositions are: the mechanical beha
of the material can be modeled by metal plasticity and the m
mum indentation depth is not higher than eight times of the yi
depth. Note that the latter condition is attributed to the limits
finite element simulations, carried out, and is not a restriction
general.

The neural networks for preparing of the input data are a
useful to reduce the scatter of experimental data. However,
work is concerned with the theoretical problems when identify
Poisson’s ratio. It cannot be precluded that additional experim
Journal of Applied Mechanics
ng
b-

tio
up-
ral
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er
has
vior
xi-
ld
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lso
this
ng
en-

tal errors, like, e.g., uncertainty of zero depth, roughness, mac
compliance, or a nonideal spherical indenter may occur. Th
fore, further difficulties may appear, when dealing with expe
mental data. In this sense the present paper should be regard
the first step towards determining the Poisson’s ratio for r
materials.
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Generalized Bending of a Large,
Shear Deformable Isotropic Plate
Containing a Circular Hole or
Rigid Inclusion
The problem of a large isotropic plate with a circular hole or rigid circular inclusion
considered here. The plate experiences transverse shear deformation and is subje
an arbitrary bending field. By using Reissner’s plate theory, a general solution, in te
of Poisson’s ration, a geometric ratio, and bending moment ratio B, is obtained to sat
both the boundary conditions along the edge and at great distances from the edge
stress couple concentration factors are calculated and compared with classical
theory, three-dimensional elasticity theory, higher-order plate theory, and an experim
tal result. @DOI: 10.1115/1.1348014#
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Introduction
The problem of the bending stress concentration for a circ

hole in a large, thin isotropic plate subjected to a bending st
field was discussed by Bickley@1#. He considered the uniaxia
bending and cylindrical bending cases. Without reference to
work of Bickley, the uniaxial bending problem was reconsider
by Lekhnitskii @2# and the cylindrical bending problem was r
worked by Goodier@3#. They obtained explicit expressions for th
stress concentration factorK. Goodier also first solved the pur
twisting problem. The research was generalized by Bert@4# to
obtain a general equation forK as

K5
513n

31n
1

12n

31n
B (1)

wheren is Poisson’s ratio andB[M y /Mx is defined to be the
ratio of principal bending moments. For uniaxial bending, cyl
drical bending, pure twisting, and balanced biaxial bendingB
50, n, 21, 1, respectively.

Goland@5# was the first to consider the effect of a rigid circul
inclusion on plate bending. He considered the cases of unia
bending, cylindrical bending, and pure twisting.

The importance of transverse shear deformation effects
stress concentration factor was first recognized by Reissner@6#.
He considered the problem of an infinite plate with a circular h
and subjected to uniaxial bending and pure twisting by allow
three boundary conditions along an edge, taking into account
effect of transverse shear deformation, and assuming that ben
stresses are distributed linearly over the thickness of the plate.
case of an infinite shear deformable plate with a circular hole
a rigid circular inclusion subjected to cylindrical bending w
treated in his later paper~@7#!. Cheng@8# considered the problem
of a large plate with a circular hole subjected to uniaxial bend
by means of his refined plate theory, which was deduced fr
three-dimensional elasticity and took into account the shear de
mation. Chen and Archer@9# reconsidered this problem by usin
their 12-order thick plate theory.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, De
6, 1999; final revision, June 27, 2000. Associate Editor: A. K. Mal. Discussion on
paper should be addressed to the Editor, Professor Lewis T. Wheeler, Departm
Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and
be accepted until four months after final publication of the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
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The case of an infinite plate with a rigid circular inclusion su
jected to uniaxial bending was complimented by Hirsch@10# by
using Reissner’s plate theory.

The purpose of the present work is to generalize to anarbitrary
bending fieldthe previous research on the stress concentra
factor for large, shear deformable isotropic plates containin
circular hole or rigid inclusion, by using Reissner’s plate theo
Comparisons are made with classical plate theory, thr
dimensional elasticity theory by Alblas@11#, Cheng’s~@8#! results,
Chen and Archer’s~@9#! results, and Dumont’s~@12#! experimen-
tal result.

Governing Differential Equations
Reissner@13# derived the expressions for stress couplesM and

transverse shear stress resultantsQ for a uniform isotropic shear
deformable plate~with absence of surface load! in polar coordi-
nates (r ,u) as

Mr52DS Ã ,rr 1n
Ã ,r

r
1n

Ã ,uu

r 2 D1
2

l2 S x ,ur

r
2

x ,u

r 2 D (2a)

M u52DS nÃ ,rr 1
Ã ,r

r
1

Ã ,uu

r 2 D2
2

l2 S x ,ur

r
2

x ,u

r 2 D (2b)

Mru52~12n!DS Ã ,ur

r
2

Ã ,u

r 2 D2x1
2

l2 S x ,r

r
2

x ,uu

r 2 D (2c)

Qr52D~¹2Ã! ,r1
x ,u

r
, (2d)

Qu52D
~¹2Ã! ,u

r
2x ,r , (2e)

f r52Ã ,r1
2l22

D~12n!

x ,u

r
, (2f)

fu52
Ã ,u

r
2

2l22

D~12n!
x ,r , (2g)

wheren is Poisson’s ratio,f r andfu are bending slopes,

Ã5w1
2

l2

¹2w

12n
, (3a)

1

l2 5
12n

2
SD (3b)

c.
the
nt of
ill
E
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with D and S being bending stiffness and transverse shear fl
ibility, w the normal deflection, andÃ and x being solutions of
differential equations

D¹4w50, (4)

¹2x2l2x50. (5)

For three-dimensionally homogeneous plates, the factorsD, S,
andl are

D5
Eh3

12~12n2!
, (6a)

S5
12~11n!

5Eh
, (6b)

l5
A10

h
(6c)

whereE is the Young’s modulus.

Boundary Conditions
There are two kinds of boundaries involved in this proble

The conditions at infinity are arbitrary biaxial bending momen
i.e., finite Mx and Qx50 at u50 deg and finiteM y5BMx and
Qy50 atu5p/2. Then converting from rectangular Cartesian c
ordinates to plane polar coordinates yields

Mr5
Mx

2
@~11B!1~12B!cos~2u!#;

(7)

Mru52
Mx

2
~12B!sin~2u!; Qr50.

The boundary conditions atr 5a for a hole are

Mr50, Mru50, Qr50 (8)

and for a rigid inclusion are

w50, f r50, fu50. (9)

Solution
The solution of Eq.~4! for an infinite plate with a circular hole

or inclusion and subjected to generalized bending at great
tances from the hole or inclusion has the same form as for
analogous problem of a thin plate with a hole~Bert @4#!:

w~r ,u!5c11c2 lnS r

aD1c3

r 2

a2 1c4

r 2

a2 lnS r

aD
1S d1

r 4

a4 1d2

a2

r 2 1d3

r 2

a2 1d4D cos~2u!. (10)

The general solution forx can be written as~Abramovich and
Stegun@14#!

x~r ,u!5 (
m50

`

$@AmI m~lr !1CmKm~lr !#cos~mu!

1@BmI m~lr !1DmKm~lr !#sin~mu!% (11)

where I m and Km are the first and second kinds of the modifi
Bessel functions of orderm.

In conjunction with the far-distance boundary conditions, E
~7!, solutions forw(r ,u) andx(r ,u) have the form of

w~r ,u!5c11c2 lnS r

aD1c3

r 2

a2 1S d2

a2

r 2 1d3

r 2

a2 1d4D cos~2u!

(12)
Journal of Applied Mechanics
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x~r ,u!5A0I 0~lr !1C0K0~lr !1F HA2

B2
J I 2~lr !1 H C2

D2
J K2~lr !G

3H cos~2u!

sin~2u! J . (13)

It is noted that the coefficientsc4 , d1 , A1 , Am(m.2), Bm(m
Þ2), C1 , Cm(m.2), andDm(mÞ2) must vanish in order to
satisfy the far-distance boundary conditions.

Substitution of Eqs.~12! and~13! into boundary condition, Eqs
~7!, yieldsA05A25B250, and

c352
Mxa

2

4D

~11B!

~11n!
; (14a)

d352
Mxa

2

4D

~12B!

~12n!
. (14b)

Solution for Plate With a Circular Hole
At boundaryr 5a, the conditions are listed as follows:

cos~2u! sin~2u! 1
Boundary
Conditions Eq.

d2 , d4 , B2 , D2 A2 , C2 c2 Mr50 (15a)
A2 , C2 d2 , d4 , B2 , D2 A0 , C0 Mru50 (15b)

d4 , B2 , D2 A2 , C2 ¯ Qr50 (15c)

c2 , d2 , d4 , andD2 can be solved as

Np[n1p1
8

m2 1
4

m

K28~m!

K2~m!
(16)

c252
Mxa

2

2D

~11B!

~12n!
; (17a)

d252
Mxa

2

4D

N21~11B!

N3~12n!
(17b)

d452
Mxa

2

2D

12B

N3
; (17c)

D252
2Mx

K2~m!

~12B!

N3
(17d)

wherem5la5A10a/h.
The nonzero coefficients in solutions, Eqs.~12! and ~13!, for a

shear deformable plate with a circular hole arec2 , c3 , d2 , d3 ,
d4 , D2 , as in Eqs.~14! and ~17!, and c1 , which can be any
constant. Therefore the solution forx(r ,u) can be further simpli-
fied as

x~r ,u!5D2K2~lr !sin~2u!. (18)

Solution for Plate With a Rigid Inclusion

cos~2u! sin~2u! 1
Boundary
Conditions Eq.

d2 , d4 ¯ c1 w50 (19a)
d2 , d4 , B2 , D2 A2 , C2 C2 f r50 (19b)

A2 , C2 d2 , d4 , B2 , D2 A0 , C0 fu50 (19c)

c1 , c2 , d2 , d4 , andD2 can be solved as

Pa5n211aS 8

m2 1
16

m3

K2~m!

K28~m! D (20)

c15
Mxa

2

4D

~11B!

~11n!
; (21a)
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c35
Mxa

2

2D

~11B!

~11n!
; (21b)

d252
Mxa

2

4D

~12B!P1

~12n!P21
; (21c)

d452
Mxa

2

2D

~12B!

P21
; (21d)

D25
4Mx~12B!

mK28~m!P21
. (21e)

The nonzero coefficients in solutions, Eqs.~12! and ~13!, for a
shear deformable plate with a rigid inclusion arec1 , c2 , c3 , d2 ,
d3 , d4 , andD2 , as in Eqs.~17! and~21!. The solution forx(r ,u)
can be simplified to the same form as for the circular case in
~18!, but with a different value for coefficientD2 in Eq. ~21e!.

Stress Concentration FactorK
To determine the stress concentration factor, defined byK

5Mmax/Mx , Eqs.~12! and ~13! are applied to obtain

KH5

M uS a,
p

2 D
Mx

5
412n~12B!1~11B!N1

N3
(22a)

KR5
Mr~a,0!

Mx
5

2212~112n!B2~11B!N1

~11n!P21
(22b)

with subscriptsH and R standing for hole and rigid inclusion
respectively.

By taking B5n, which corresponds to cylindrical bending, th
stress concentration factors for plates with circular hole or ri
inclusion are

KH5~11B!F11
222n

N3
G ; (23a)

KR511
2n22

P21
(23b)

which agree with Eqs.~20! and ~28! in Reissner’s paper~@7#!.
By taking B50 and K28(m)52K1(m)22/mK2(m) in Eq.

~22b!, one can obtain Hirsch’s results~@10#!.
For m→`, we obtain

KH~`!5
513n

n13
1

12n

n13
B; (24a)

KR~`!5
31n2B~113n!

~12n2!
. (24b)

By takingB50, n, 21 in Eq. ~24b!, one can get Goland’s result
~@5#!.

For m→0,

8

m2 1
16

m3

K2~m!

K28~m!
→2; (25a)

8

m2 1
4

m

K28~m!

K2~m!
→22. (25b)

The introduction of Eqs.~25! into Eqs.~22! gives

KH~0!532B; (26a)

KR~0!5
51n1B~123n!

~11n!~32n!
. (26b)

Now we are ready to make further comparisons. In Table 1,
stress concentration factors for a hole are compared with the e
three-dimensional elastic analysis by Alblas@11#, classical thin
232 Õ Vol. 68, MARCH 2001
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plate theory, Cheng’s~@8#! results, and Chen and Archer’s~@9#!
results. By no means do the present results deviate from Re
ner’s ~@7#! results since the expressions have been compared
viously to show the consistency. Slight differences between
results appear in Table 1. Often in practice, a simple method
solution, although only approximate, is preferable. Reissne
sixth-order theory is relatively practical, comparing with Che
and Archer’s 12-order theory, Cheng’s plate theory combini
fourth-order, second-order, and transcendental equations, or
most complicated one, three-dimensional elasticity.

Dumont @12# measured the stress concentration factor for
aluminum-alloy plate~with n51/3!, 55 inches square, 1.062
inches thick, containing a circular hole 8 inches in diameter, a
subjected to uniaxial bending loading, with a value of 1.85. B
means of the present method, a stress concentration facto
1.878 is obtained, which is very close to the experimental res

As a consequence, Table 2 lists stress concentration factors
various values ofn andB, for plates with a circular hole or a rigid
inclusion.

Table 1 Stress concentration factors for an infinite plate „n
Ä1Õ4… subjected to uniaxial bending

Table 2 Stress concentration factors for an infinite plate with
a circular hole or rigid inclusion
Transactions of the ASME
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Discussion and Conclusion
It is noted that the stress concentration for a thick plate wit

circular hole for large values ofm, Eq. ~24a!, converges to the
result, Eq.~1!, by means of classical thin plate theory. So does
stress concentration factor for a thick plate with a circular rig
inclusion for large value ofm, Eq. ~24b!. It is worth noting that
result ~26a! coincides with the stress concentration factor for
large, thin, isotropic plate with a circular hole subjected to a
in-planestress field. Actually, ‘‘in the limit of a very thick plate
~large plate thickness/hole radius!, K ~stress concentration factor!
for bending approaches that for in-plane loading,’’ Bert@4#. The
authors claim that Eq.~26b! describes the stress concentrati
factor for a very thick plate with a circular rigid inclusion sub
jected to an in-plane stress field.

Recall from Bert@4#, in connection with a large thin plate with
a circular hole, ‘‘for generalized plane stress,K is independent of
n, while for generalized bending it depends uponn ~except for the
case ofB51!.’’ It is interesting to note that in fact there is
similar case for a thick plate. For a large thick plate with a circu
hole subjected to balanced bending stress (B51), Eq. ~22a!
yields KH52, which is independent of Poisson’s ration and ge-
ometry ratioa/h. Actually its limiting casesKH(`), Eq. ~24a!,
and KH(0), Eq. ~26a!, also yield a constantKH with value 2,
independent ofn anda/h. Other than for balanced bending,KH is
a function ofB, n anda/h.

However, for a large plate with a circular rigid inclusion,KR
depends onn, B, and a/h, except for the special case (B51),
KR52/(11n), which is independent ofa/h.
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Three-Dimensional Solutions of
Smart Functionally Graded Plates
A smart functionally graded plate consists of a plate made of a functionally grad
material and actuators made of an active material. The active material, a layer or s
patches, is bonded on the metal-rich surface of the functionally graded plate. Whe
ceramic-rich surface of the substrate is subjected to thermomechanical loadings
placements, and stresses may be controlled, and vibration amplitudes may be supp
by the actuators with supplied electric power. In the attempt towards a basic unders
ing of the new type of smart structural system, this study considers a benchmark pro
namely, the bending of a functionally graded rectangular plate with an attached pi
electric actuator. The transfer matrix and asymptotic expansion techniques are emp
to obtain a three-dimensional asymptotic solution. In numerical computations, the lo
effective material properties of the functionally gradient material are estimated by
Mori-Tanaka scheme. The three-dimensional distributions of displacements and st
for different volume fractions of the ceramic and metallic constituents could serv
benchmark results to assess approximate theories and numerical methods.
@DOI: 10.1115/1.1347994#
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1 Introduction
Functionally gradient materials~FGMs! are spatial composite

within which material properties vary continuously and inhom
geneously. This is achieved by gradually changing the comp
tion of the constituent materials along one direction, usually
thickness direction from one surface to another, to obtain smo
variation of material properties and optimum response to ex
nally applied thermomechanical loads. Typically, functiona
graded materials are made from mixture of two or more mater
that are appropriate to achieve the desired objective. For exam
thermal barrier structures are made of ceramic and metal to w
stand high-temperature gradient environments while maintain
the structural strength and fracture toughness. The ceramic
stituent of the material provides the high temperature resista
due to its low thermal conductivity. The ductile metal constitue
on the other hand, is placed where greater toughness is ne
There have been several studies of microstructural~see@1,2#! and
macrostructural~see @3–13# and references therein! aspects of
FGMs. In addition, numerous symposia that are organized in
cent years attest to the increased interest in the topic.

Structures with surface-mounted or embedded sensors an
tuators are referred to as smart structures. The type of struc
system is capable of adapting or taking corrective action to cha
ing operating conditions. The passive structure in a smart sys
is the load bearing part, whereas the active material part i
perform the operations of sensing and actuation. The actua
work to induce a counteractive static deformation or vibrat
suppression of the passive structure~e.g.,@14–18#!.

By integrating active materials onto the structures made
FGMs, a smart functionally graded~FG! structural system is natu
rally manifested. It makes possible that the FG structures ca
actuated by properly applied electric voltage to the actuator
achieve desired shapes and suppress the amplitudes of vibra
With the advent of the smart FG structural system, the opera
environments pose serious problem to the design and ma

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, De
6, 1999; final revision, May 2, 2000. Associate Editor: M.-J. Pindera. Discussion
the paper should be addressed to the Editor, Prof. Lewis T. Wheeler, Departme
Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and
be accepted until four months after final publication of the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
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nance. The FG structures are subjected to thermomechanical
and the integrated actuators are subjected to appropriate ele
voltages, featuring functionality and thermoelectromechan
coupling.

There are two approaches to the bending solution of the be
mark problems of a laminated rectangular plate. Pagano@19,20#
has developed exact solutions of simply supported laminated e
tic plates by using the three-dimensional elasticity theory. Pa
no’s method simply treats the laminate layer by layer and th
enforces the interface continuity conditions. An alternative a
proach is the transfer matrix technique, in which the interfac
continuity conditions are utilized. Both approaches have been
tended widely to the analyses of composite laminated plates
shells for different materials and loads~@21–27#, among others!.
However, the two approaches are only valid for laminated pla
and shells, where the material properties are piecewise const

Pagano’s method and the transfer matrix method are not v
for finding solutions of plate and shell problems with continuo
inhomogeneity. A structure made of a FGM is a typical ca
Asymptotic expansion is, instead, an efficient method for this k
of problems. This method has seen its applications in single-la
piezoelectric plates~@28,29#! for a leading-order solution, lami-
nated elastic, and piezoelectric plates~@30–39#! for higher-order
solutions.

In this paper, the transfer matrix formulation is presented
combination with the asymptotic expansion and is used for obt
ing an asymptotic solution to a desired degree of numerical ac
racy. The Mori-Tanaka scheme is used to give locally effect
material properties of the FGM~@2,36#!. Numerical results are
presented for smart FG rectangular plates, and the results
serve as a reference for checking the validity of approximate th
ries and numerical methods.

2 Transfer Matrix Formulation
Figure 1 shows a FG plate attached on its bottom surface b

piezoelectric actuator. A Cartesian coordinate systemOx1x2x3 is
used and the reference planex350 is located at the bottom sur
face of the actuator. The top surfaces of the undeformed FG p
and the actuator lie atx35h and hE . Two thin-film conducting
electrodes are placed, respectively, on the upper and lower
faces of the actuator to carry an alternating forcing electric pot
tial. For simplicity, negligible thickness of an electrode
assumed.
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Let t and S denote the symmetric stress and strain tensorsD
andE the electric displacement and the electric field vectors,u the
mechanical displacement vector,w the electric potential, andT the
increment in temperature from a stress-free reference config
tion. The governing equations of linear piezothermoelasticity
the absence of body forces and electric charge density, are~@40#!

¹T
•t50, ¹•D50; (1)

S5
1

2
@¹u1~¹u!T#, E52¹w, (2)

where¹ denotes the gradient operator in three dimensions. F
piezoceramic material of class 6mm with poling in th
x3-direction, the constitutive relations can be written in the mat
form ~@41#! as

3
t11

t22

t33

t23

t31

t12

D1

D2

D3

4 53
c11 c12 c13 0 0 0 0 0 e31

c12 c11 c13 0 0 0 0 0 e31

c13 c13 c33 0 0 0 0 0 e33

0 0 0 c44 0 0 0 e15 0

0 0 0 0 c44 0 e15 0 0

0 0 0 0 0 c66 0 0 0

0 0 0 0 e15 0 2e11 0 0

0 0 0 e15 0 0 0 2e11 0

e31 e31 e33 0 0 0 0 0 2e33

4
33

S11

S22

S33

2S23

2S31

2S12

2E1

2E2

2E3

4 13
2l11

2l22

2l33

0
0
0
0
0
p3

4 T, (3)

with c665(c112c12)/2. Deformation of the actuator made of lea
zirconate titanate~PZT! is governed by the three sets of Eq
~1!–~3!. They can also be used for the FG plate made of an in
mogeneous isotropic material by setting

c115c33, c125c13, c445c66, e115e33,
(4)

e315e335e1550, p350.

The nonzero elastic and dielectric moduli in~4! for a FGM are
functions ofx3 . The dielectricity equation for the FGM, which i
decoupled from the elastostatics, is not of interest in this pa

Fig. 1 Geometry of a smart FG plate
Journal of Applied Mechanics
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Thus the dielectric moduli of the FGM are trivial to the deform
tion of the actuated plate. This observation will be utilized late

Equations~1! through~3! may be reformulated as the followin
state-space equation:

]3F F
GG5F 0 A

B 0G F F
GG1F 0

CGT, (5)

where] i[]/]xi ( i 51,2,3), and

F5@u1 u2 t33 D3#T, G5@t13 t23 u3 w#T. (6)

The 434 operator matricesA andB and 431 operator matrixC
contain the in-plane differential operators]1 and]2 , and depend
on x3 only through the material moduli:

A5F 1/c44 0 2]1 2k1]1

0 1/c44 2]2 2k1]2

2]1 2]2 0 0

2k1]1 2k1]2 0 k2D

G ,

B5F 2k3]1
22c66]2

2 ~c662k3!]1]2 2k4]1 2k5]1

~c662k3!]1]2 2c66]1
22k3]2

2 2k4]2 2k5]2

2k4]1 2k4]2 e33k0 e33k0

2k5]1 2k5]2 e33k0 2c33k0

G ,

(7)

C5F k6]1

k6]2

~e33l332e33p3!k0

~e33l331c33p3!k0

G ,

whereD[]1
21]2

2 is the Laplace operator in two dimensions. Th
in-plane stresses and in-plane electric displacements, which
discontinuous across the internal electrode atx35hE , are given
by

t115k3]1u11~k322c66!]2u21k4t331k5D32k6T,

t225~k322c66!]1u11k3]2u21k4t331k5D32k6T,

t125c66~]2u11]1u2!, (8)

D15k1t132k2]1w,

D25k1t232k2]2w

where

k05
1

c33e331e33
2 , k15

e15

c44
, k25

e15
2

c44
1«11,

k35c112~c13
2 e3312c13e31e332c33e31

2 !k0 ,
(9)

k45~c13e331e31e33!k0 , k55~c13e332c33e31!k0 ,

k65l112~c13e331e31e33!l33k01~c13e332c33e31!p3k0 .

3 Asymptotic Scheme
The mechanical loading is specified by the tangential tracti

q1
6 , q2

6 and the normal pressuresq3
6 at the plate surfacesx3

5h,0. The electric loading is specified by applied electric pote
tials VE and V2 at the electrodesx35hE,0. The plate is also
subjected to a three-dimensional thermal loadT, to be separately
solved from a heat conduction problem. The thickness coordin
is scaled asz5x3 /x by the small parameterx5h/a, wherea is a
typical in-plane dimension andz varies from 0 toa as x3 goes
MARCH 2001, Vol. 68 Õ 235
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from 0 to h. The interface between the FG plate and the actua
is at z5aE[hE /x. The mechanical and thermal loads are th
scaled as

t13uz505x2q1
2 , t23uz505x2q2

2 , t33uz5052x3q3
2 ,

wuz505x2V2, (10)

t13uz5a5x2q1
1 , t23uz5a5x2q2

1 , t33uz5a52x3q3
1 ,

wuz5aE
5x2VE . (11)

The state space functionsF andG are expanded in terms of th
small thickness parameterx as

F F
GG5(

n50

`

x2nFxf~n!

g~n! G . (12)

Denoting the integral operators

Q~¯ ![E
0

z

~¯ !dz, Q̄~¯ ![E
0

a

~¯ !dz,

QE~¯ ![E
0

aE

~¯ !dz, (13)

and substituting the expansion~12! into Eq. ~5!, with the help of
Eq. ~10!, leads to

g~0!5F 0
0

U3
~0!

0
G , g~n11!5F q1

2dn0

q2
2dn0

U3
~n11!

V2dn0

G1QBf~n!1dn0QCu,

f~n!5X~n!1H~n!, ~n>0!, (14)
M
e
t

l
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where

X~n!5F U1
~n!2z]1U3

~n!

U2
~n!2z]2U3

~n!

0
U4

~n!1^D3
~n!&H~z2aE!

G ,

(15)

H~n11!5dn0H QAF q1
2

q2
2

0
V2

G2F 0
0

q3
2

0
G1QAQCuJ

1QAQB~X~n!1H~n!!,

with H(0)50, u5T/x and ^D3
(n)&[D3

(n)uz5a
E
12D3

(n)uz5a
E
2. Be-

cause of the internal conducting electrode atz5aE , the transverse
electric displacement must be different on the two sides of
electrode. In this case, the discontinuity in the transverse ele
displacement must be accommodated. In addition to the unkn
^D3

(n)&, the basic unknowns are the components of the three
chanical displacements and the electric displacement at the bo
surfacez50 of the actuator:

U1
~n!5u1

~n!uz50 , U2
~n!5u2

~n!uz50 , U3
~n!5u3

~n!uz50 ,

U4
~n![D3

~n!uz501. (16)

These unknowns are to be determined such that the condit
~11! are satisfied through Eq.~14!. After some manipulation, this
gives

Rf~n!5dn0Y, (17)

where
R5F 2Q̄k3]1
22Q̄c66]2

2 Q̄~c662k3!]1]2 2Q̄k4]1 2Q̄k5]1

Q̄~c662k3!]1]2 2Q̄c66]1
22Q̄k3]2

2 2Q̄k4]2 2Q̄k5]2

2Q̄zk3]1D 2Q̄zk3]2D 2Q̄zk4D 2Q̄zk5D

2QEk5]1 2QEk5]2 QEe33k0 2QEc33k0

G , (18)
er-
ill
m
Y5F q1

12q1
22Q̄k6]1u

q2
12q2

22Q̄k6]2u

2q3
11q3

21a~]1q1
11]2q2

1!2Q̄zk6Du
VE2V22QE~e33l331c33p3!k0u

G . (19)

The set of Eqs.~17! of each order have four equations for fiv
unknownsUi

(n)( i 51,2,3,4) and^D3
(n)&. The jump in the trans-

verse electric displacement across the internal electrode atz5aE
can be evaluated from a rigid dielectricity equation for the FG
which is decoupled from the thermoelastic deformation probl
under consideration. Because it is a problem of no interes
practice, an important procedure is proposed to simplify Eq.~17!.

Physically, it is clear that the dielectric properties and the th
moelastic properties of the FGM are irrelevant to each other. T
the dielectric moduli of the FGM have trivial contributions to th
thermoelastic deformation of the FG plate. As mentioned ear
this property may be utilized to advantage. By setting the tra
verse dielectric moduluse33

FGM of the FGM to be infinite, it will
e

,
m
in

er-
hus
e
ier,
ns-

only change the dielectricity solution for the material. The th
moelasticity solution for the FG plate will not change and nor w
the piezothermoelasticity solution for the actuator. It is clear fro
~7!2 and ~9!1, when aE,z<a, that B4452c33k050 as e33

FGM

→`. In addition,B145B245B3450 whenaE,z<a. It follows
that the term̂ D3

(n)&H(z2aE) involved in X(n) has a trivial con-
tribution to QBX(n), and hence to the recurrence relation~15!2.
The same is that̂D3

(n)&H(z2aE) has a trivial contribution to Eq.
~17! as a result ofR1452QEk5]1 , R2452QEk5]2 , R345

2QEzk5D andR4452QEc33k0 . Consequently,̂D3
(n)&H(z2aE)

may be dropped in Eq.~15!1 when takinge33
FGM→`. This reduces

Eq. ~17! to

R̃X̃~n!5dn0Y2RH~n!, (20)

where

X̃~n!5@U1
~n! U2

~n! 2U3
~n! U4

~n!#T, (21)
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R̃52F Q̄k3]1
21Q̄c66]2

2 Q̄~k32c66!]1]2 Q̄zk3]1D QEk5]1

Q̄~k32c66!]1]2 Q̄c66]1
21Q̄k3]2

2 Q̄zk3]2D QEk5]2

Q̄zk3]1D Q̄zk3]2D Q̄z2k3D2 QEzk5D

QEk5]1 QEk5]2 QEzk5D QEc33k0

G . (22)
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Note that the symmetric matrix operatorR̃ is a generalization of
that for the bending of inhomogeneous elastic plates derived
der the Kirchhoff thin plate assumptions~@42#!. Details for the
numerical asymptotic procedure may be found in@37#.

4 Numerical Results
The locally effective material properties of an FGM can

predicted by micromechanical models such as the Mori-Tan
estimates, the self-consistent, generalized self-consistent or d
ential schemes, or the cell method proposed by Aboudi@43#. It
should be noted that these average field schemes, except th
method, are originally developed for statistically homogene
aggregates based on a representative volume element~RVE!. In
general, however, such a representative volume element ma
be defined in a FGM. Assessment of these existing micromech
cal schemes has been given in, for example,@44–47#.

Consider a two-phase composite plate consisting of a ma
phase denoted by subscript 1 and a particulate phase denot
the subscript 2. The composite is reinforced by spherical partic
randomly distributed in the plane of the plate. The locally effe
tive bulk modulusK and shear modulusm of the FGM are given
by the Mori-Tanaka estimates~@48,49#! as

K2K1

K22K1
5

V2

11~12V2!
K22K1

K11
4
3m1

,

m2m1

m22m1
5

V2

11~12V2!
m22m1

m11p1

, p15
m1~9K118m1!

6~K112m1!
.

(23)

The locally effective heat conductivity coefficientk is given by
~@50#!

Fig. 2 Through-the-thickness distribution of the ceramic
phase in the FG plate
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k2k1

k22k1
5

V2

11~12V2!
k22k1

3k1

. (24)

The coefficient of thermal expansiona is determined in terms of
the exact correspondence relation~@51#!

a2a1

a22a1
5

1

K
2

1

K1

1

K2
2

1

K1

. (25)

HereV2 denotes the volume fraction of the particulate phase. T
Mori-Tanaka estimates on statistically homogeneous compos
with spherical reinforcements coincide with the Hashin-Shtrikm
upper and lower bounds on elastic moduli~@52#!, when the stiffer
phase serves as a matrix or reinforcement of well-ordered c
posites.

It is assumed that the volume fraction of the ceramic phase i
the power-law typeVc5@(x32hE)/(h2hE)#n. Figure 2 shows
the through-thickness variation forn50.2, 0.5, 1, 2, 5. Note tha
the bottom surface of the FG plate is metal-rich and the top s
face is ceramic-rich. In actual service conditions, top zirconia s
face provides a thermal barrier on Ni-based structural compon
in aircraft engines. The constituent materials of the FG plate
taken to be nickel-based alloy, Monel~70Ni-30Cu!, and zirconia
with their material properties~@3,53,54#!

Km5227.243109 N/m2, Kc5125.833109 N/m2,

mm565.553109 N/m2, mc558.0773109 N/m2,

am51531026/K, ac51031026/K,

km525 W/mK, kc52.09 W/mK, (26)

where the subscriptsm and c stand for the metal and ceramic
When Monel and zirconia serve as a matrix phase, respectiv
two sets of effective material moduli are obtained. It can
proved that if the shear moduli of two constituents are identic
the two sets of estimates on the effective material moduliK, m,
anda will be identical. Because the value of the shear modulus
Monel is close to that of zirconia, the two sets of estimates onK,
m anda are very close to each other. In the following numeric
results Monel is chosen to serve as a matrix phase. The mater
the actuator is taken as PZT-5A with the following material pro
erties~@25#!:

c11599.2013109 N/m2, c12554.0163109 N/m2,

c13550.7783109 N/m2,

c33586.8563109 N/m2, c44521.13109 N/m2,

e31527.209 C/m2, e33515.118 C/m2, e15512.322 C/m2,

e1151.5331028 F/m, e3351.531028 F/m,

l1150.33143106 N/m2K, l3350.3263106 N/m2K,

p35731024 C/m2K,

k1151.8 W/mK, k3351.8 W/mK. (27)
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Because the bottom surface of the FG plate is a metal surf
the applied electric potential at the internal electrode isVE50. A
rectangular plate is considered in the following example. The o
nonzero loads are specified as

@T1 q3
1 V2#5@ T̂1 q̂3

1 V̂2# sin l 1x1 sin l 2x2 , (28)

l 15
m1p

a
, l 25

m2p

b
, (29)

where a quantity with a superimposed hat denotes the ampli
of the corresponding physical quantity. The solution procedure
the temperature field is taken similarly to that given in the l
section, i.e., an asymptotic scheme for the steady-state heat
duction problem, but details are omitted.

In general, specifying the edge boundary conditions in the se
of the Kirchhoff plate theory only yields the accurate leadin
order interior solution. An accurate and consistent description
the boundary conditions for solving higher-order interior solutio
should account for the specified edge distribution to achiev
decaying state, i.e., asymptotic to the exact solution away f
edges~@55,56#!. However, for the special case of the edge bou
ary conditions:

u25u35t115w5T50, at x150,a,
(30)

Fig. 3 Through-the-thickness distribution of the dimension-
less displacement ū 1 of the plate „aÕbÄ1, nÄ0.5, 1, 2… under „I…
the thermal load T¿, „II… the mechanical load q 3

¿ , and „III… the
electric load ÀVÀ: „a… aÕhÄ10; „b… aÕhÄ4
238 Õ Vol. 68, MARCH 2001
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u15u35t225w5T50, at x250,b,

there are no boundary layer effects for the specific problem
fully three-dimensional solution may be generated to any des
degree of numerical accuracy in terms of

X̃~n!5F U1
~n!

U2
~n!

2U3
~n!

U4
~n!

G5F Û1
~n! cosl 1x1 sin l 2x2

Û2
~n! sin l 1x1 cosl 2x2

2Û3
~n! sin l 1x1 sin l 2x2

Û4
~n! sin l 1x1 sin l 2x2

G ,

T5T̂ sin l 1x1 sin l 2x2 . (31)

The peak values of the physical quantities are nondimensio
ized by

ūi5
ûi

Pa
, t̄ i j 5

t̂ i j

Pc*
, T̄5

a* T̂

P
, (32)

whereP5a* T̂1 for applied thermal loadT1, P5q̂3
1/c* for ap-

plied mechanical loadq3
1 , andP5V̂2(e* /ac* ) for applied elec-

tric load2V2. Results for complex loadings can be obtained b
linear superposition of respective results caused by simple lo
ings. a/b51, hE /h50.1, m15m251, c* 51010 Nm22, e*

Fig. 4 Through-the-thickness distribution of the dimension-
less deflection ū 3 of the plate „aÕbÄ1, nÄ0.5, 1, 2… under „I… the
thermal load T¿, „II… the mechanical load q 3

¿ , and „III… the elec-
tric load ÀVÀ: „a… aÕhÄ10; „b… aÕhÄ4
Transactions of the ASME
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510 Cm22, anda* 51026 K21 are used. The 30th-order solutio
is given to ensure numerical convergence to five significant dig
Information on the numerical convergence can be found in@37#.

The through-thickness distributions of the displacementsū1 and
ū3 ~a/b51, n50.5, 1, 2! under~I! the thermal loadT1, ~II ! the
mechanical loadq3

1 , ~III ! the electric load2V2 are plotted in
Figs. 3 and 4, respectively, for~a! a/h510 and~b! a/h54. Under
mechanical and electric loads, differences of the distributions
the displacementsū1 and ū3 between the three volume fraction
n50.5, 1, 2 are not visibly noticeable. The volume fraction d
tribution is significant only with respect to the applied temperat
field. The in-plane displacementū1 is linearly distributed through
the plate thickness for the case of a moderate thick plate (a/h
510) and is nearly linearly distributed for the case of a thick pl
(a/h54). The through-thickness distribution of the transve
displacementū3 is constant for the case of the mechanical loa
even for a thick plate. The through-thickness distribution of

Fig. 5 Through-the-thickness distribution of the dimension-
less longitudinal stress s̄11 of the plate under „I… the thermal
load T¿, „II… the mechanical load q 3

¿ , and „III… the electric load
ÀVÀ

„aÕbÄ1, aÕhÄ4, nÄ1…

Fig. 6 Through-the-thickness distribution of the dimension-
less longitudinal stress s̄12 of the plate under „I… the thermal
load T¿, „II… the mechanical load q 3

¿ , and „III… the electric load
ÀVÀ

„aÕbÄ1, aÕhÄ4, nÄ1…
Journal of Applied Mechanics
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deflection ū3 of the plate under the electric load is piecewi
linear. The through-thickness distribution of the deflectionū3 for
the case of the thermal load is nonlinear for a thick plate (a/h
54). The information provided is useful for constructing
displacement-based approximate theory.

Through-the-thickness distributions of the stressess̄11, s̄12,
s̄13, and s̄33 are, respectively, depicted in Figs. 5–8 fora/h54
andn51, when the plate is loaded by~I! the thermal loadT1, ~II !
the mechanical loadq3

1 , and ~III ! the electric load2V2. The
longitudinal stressess̄11 and s̄12 are discontinuous across the in
terface between the FG plate and the actuator. In the cas
thermal load, their magnitudes are much bigger than those of
transverse stressess̄13 ands̄33. It is seen in Fig. 7 that the inter
facial stresss̄13 at z5aE is significant in the case of thermal an
electric loads. This adverse effect may possibly generate dela
nation between the actuator and the substrate when using th
tive material to actuate the substrate structure. Although res

Fig. 7 Through-the-thickness distribution of the dimension-
less transverse shear stress s̄13 of the plate under „I… the ther-
mal load T¿, „II… the mechanical load q 3

¿ , and „III… the electric
load ÀVÀ

„aÕbÄ1, aÕhÄ4, nÄ1…

Fig. 8 Through-the-thickness distribution of the dimension-
less transverse normal stress s̄33 of the plate under „I… the ther-
mal load T¿, „II… the mechanical load q 3

¿ , and „III… the electric
load ÀVÀ

„aÕbÄ1, aÕhÄ4, nÄ1…
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for n50.5 and 2 are not given herein, significant differences
the stress distributions ofs̄11, s̄12, s̄13, and s̄33 between the
three different volume fractions are only noticed for the case
thermal load. The volume fraction does not change much the
tributions of these stresses in the case of mechanical and ele
loads.

Table 1 Results for the smart FG plate under the thermal load
„aÕbÄ1, nÄ2…

Table 2 Results for the smart FG plate under the mechanical
load „aÕbÄ1, nÄ2…
240 Õ Vol. 68, MARCH 2001
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Tables 1, 2, and 3 provide useful results at some partic
points of the plate fora/h54 ~thick!, 10 ~moderately thick!, or 50
~thin!, respectively, under thermal, mechanical, and electric loa
For a thin platea/h550, a nearly constant through-thickness d
tribution of the deflection is found in every load case. When
plate is moderately thick or thick, change in the through-thickn
deflection becomes significant, especially for a thick plate (a/h
54) under the thermal and electric loads.

Deflection control is illustrated by takinga/b51, a/h510,
hE /h50.1, n52. According to Tables 1–3, for the applied tem
peratureT15300 K and vanishing mechanical loadq3

150, the
required electric voltage through the thickness of the actuato
reduce to~1–b! percent of the central deflection of the FG pla
(x350.55h) is calculated asV̂2/hE5234.486b (MV/m). For
example,b50.4 means that the actuator reduces 40 percent of
deflection atx350.55h of the smart FG plate.

5 Conclusions
Active control of deflections of a functionally graded plate

which piezoelectric actuators are bonded on the metal-rich sur
of the FG plate has been developed. The benchmark problem
rectangular FG plate with an attached piezoelectric actuator
been studied. An asymptotic scheme has been used to gene
three-dimensional solution. The solution is exact in the sense
any desired numerical accuracy may be achieved. Numerica
sults are presented that may serve as a reference for develo
approximate theories and checking numerical solutions. It is
served that the volume fraction distribution is significant on
with respect to the applied temperature field.
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Simulations of Crack Propagation
in Porous Materials
Failure propagation behavior of thermally sprayed coatings containing many rand
pores is investigated. The porous coatings are subjected to either external mech
loads or residual stresses generated by temperature changes. The failure growth cri
is governed by the critical energy release rate. In our finite element analysis, the coh
model is used to separate element boundaries during crack propagation in the inh
geneous materials. The accuracy of the cohesive elements for the quasi-static
growth is closely evaluated by an error analysis. We have observed that the coh
elements may artificially increase the model compliance and introduce numerical er
In order to minimize such errors, the parameters for cohesive model must be ch
carefully. Their numerical convergence and stability conditions with an implicit ti
integration scheme are also examined. In the porous material analysis, crack propag
is simulated to characterize its unique failure process. It appears a crack tends to pr
gate along the shortest path between neighboring pores. In addition, crack/pore co
cence mechanism causes the apparent crack length to increase discontinuously.
thermally loaded conditions, the residual stresses generated by material mism
in multilayered coatings drive cracks to grow. Using the present crack propaga
model, the critical temperature leading to the complete porous coating failure ca
approximated. @DOI: 10.1115/1.1356029#
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1 Introduction
The microstructure of a thermally sprayed ceramic coating

characterized by the existence of various pores, microcracks,
boundaries, and unmelted particles. These attributes greatly i
ence the failure characteristics of coatings. In general, the po
microstructure reduces the overall coating strength as well a
resistance to failure. Thermally sprayed coatings are also an
tropic, adding complexity to their mechanical characterizati
There have been numerous experiments to measure the coa
fracture toughness~@1,2#!. For plasma sprayed coatings, th
toughness is measured to be a small fraction of correspon
value for the bulk material. In this study, we attempt to ident
the mechanisms that lead to lower propagation toughness in t
porous materials.

In our computational analysis, unique microstructural featu
of sprayed coatings, described by randomly distributed pores
various sizes and shapes, are included in the finite element m
els. These models are similar to the ones used to determine
effective moduli of coatings~@3#!. Since thermally sprayed coa
ing contains no two pores exactly alike, the pores must be m
eled nonuniformly. Thus, the modeling requires a complex pro
dure to represent actual coatings. To closely study the prope
of actual coatings we have modeled ceramic coatings with st
tical distributions of pore sizes and shapes that follow those
alumina-titania coatings~@4#!.

To simulate crack propagation behavior in a highly inhomo
neous medium, we have implemented cohesive elements in
porous coating model. The cohesive type elements have been
successfully in various dynamic crack propagation and fragm
tation analyses~@5–8#!. While the cohesive elements were us
with noniterative explicit time integration schemes in these ana
ses, we have implemented the elements in quasi-static ana

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, De
14, 1999; final revision, July 26, 2000. Associate Editor: A. Needleman. Discus
on the paper should be addressed to the Editor, Professor Lewis T. Wheeler, D
ment of Mechanical Engineering, University of Houston, Houston, TX 77204-47
and will be accepted until four months after final publication of the paper itself in
ASME JOURNAL OF APPLIED MECHANICS.
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with an implicit time integration scheme. In the past, the cohes
elements were also employed in number of quasi-static analy
for example by Needleman@9#, Tvergaard and Hutchinson@10#,
and Lin et al.@11#. When the cohesive elements are used in c
junction with a common iterative scheme in static analyses
numerical instability may arise. This aspect and numerical in
curacy associated with the cohesive model are closely exam
in the error analysis presented in this study.

2 Microstructure of Porous Coatings

2.1 Characteristics of Plasma Sprayed Coatings. The
process of plasma spraying renders unique coating microst
tures which are greatly different from those of corresponding b
materials. The characteristics of coating microstructures can
summarized as porous lamella structures. The pancake-sh
splat which is about 1–5mm thick and 10–50mm in diameter is
the basic structural unit of a coating. Inside a splat, perpendic
columnar grain structures can be observed and indicate the g
ent direction of the solidification process during cool-down. D
to the nature of the thermal spraying process, various kinds
defects can be observed in coatings~@12,13#!. Those defects may
lie along splat boundaries and can be caused by weak adhe
between splats. The pores and delaminations and microcr
may grow under certain mechanical and/or thermal load
weaken coatings. Numerous experiments have been carried o
evaluate the porosity of the thermally sprayed coatings. Depe
ing on the coating process and spray parameters, the porosi
the total volume fraction of pores in ceramic coatings may ran
from less than a few percent to about 20 percent.

The global or average properties of plasma sprayed coatings
usually very different from those of fully dense materials. T
effective elastic modulus and fracture initiation toughness of
ramic coatings can be measured by various experimental meth
such as uniaxial tension, four-point bending, indentation, and
trasonic tests. Due to their microstructure, the modulus as we
toughness of ceramic coatings can be one to two orders of m
nitude smaller than the bulk or intrinsic modulus and toughne
Pores and splat boundaries constitute the major reductions. In
dition, inhomogeneous phases, impurities, and residual stre
probably contribute to lowering of the material constants.
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2.2 Distributions of Pore Sizes and Shapes.Experimen-
tally measured pore geometry provides not only microstructu
details but also the basis for modeling porous coating and stu
ing how coating microstructures affect mechanical propert
There are several precise quantitative studies of pore sizes
shapes in coatings using various techniques, including X-ray
mography. Here our aim is not to exactly model a small section
a coating with a few pores, but is to identify underlying geome
cal factors which influence the failure response. For this purp
collective information on many pores is needed rather than v
accurate descriptions of few pores. Such results are available
a stereologically measured data obtained by Leigh and Bernd@4#
where a complete set of data on the pore size and sh
distributions found in a plasma-sprayed alumina-tita
(Al2O3–13 wt % TiO2) coating were presented. According to th
measurements, the sizes of most pores fall between 10 and
mm and sharp and cracklike pores are abundant in the alum
titania coating. In general, many of the larger sized pores
cracklike while most small pores are close to circular shape.

3 Crack Propagation Procedure

3.1 Various Methods to Simulate Crack Growth. Com-
putational simulation of a propagating crack is complex and
ficult since the crack shape and tip location must be consta
redefined and updated. There are a few classes of approach
simulate crack propagation. One approach is based on remod
or remeshing technique. After crack growth rate and direction
determined by the stress intensity factors and/or the maxim
opening stress, remeshing of the computational model was ca
out at every increment. Continuous remeshing model is shown
Wawrzynek and Ingraffea@14# and more recently by meshfree o
so-called element-free Galerkin method which was introduced
Belytschko et al.@15#. The advantage of this approach is th
crack path can be chosen arbitrary but the computational
tends to be high due to remodeling at every increment. Ano
approach uses a continuous array of special elements to repr
the path of crack growth. The material properties of these
ments are based on observed constitutive behaviors of an a
crack in propagation. One of such models is ‘‘smeared cr
model’’ developed by Dagher and Kulendran@16#. The element
property is governed by the observed linear strain softening in
wake of crack propagation. A similar method was proposed
Padovan and Guo@17# and was further modified by Padovan an
Jae @18#. Their model implements a movable crack templa
which moves within a global field. The template contains spe
elements and as soon as the crack tip passes through such
ments, their stiffness perpendicular to the path is vanished
simulate the effect of traction-free crack surfaces. The trace
these wake elements showcases the trail of crack growth.

Yet another approach involves a very little or no remodeling
original mesh. However, possible crack propagation path is
stricted along element boundaries. Many traditional dynam
crack propagation simulations were carried out with the no
release/separation technique and the moving singular elem
method@19,20#. The latter method requires a limited remeshi
near the tip although the crack path remains along the predefi
boundaries. In the node release method, when a certain c
growth criterion is met, the displacement constraint at the cra
tip node is removed and replaced by an equivalent force. Du
several subsequent increments, this force is reduced and the
tip is advanced to the next node. A similar method, but with
different procedure to create new crack surfaces along elem
boundaries was proposed by Xu and Needleman@5#. Their method
places a special spring element between two nodes to be s
rated. Essentially, element boundaries are treated as cohesiv
faces and separation of such surfaces simulates a crack grow
major advantage of this method is that the cohesive elements
be included to an existing code without a major reprogrammi
Also the cohesive model can handle simultaneous multiple cr
Journal of Applied Mechanics
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growths and its load or time increments are not tied to the cr
growth behavior. Recently, Gao and Klein@21# and Zhang et al.
@22# introduced another type of cohesive model. In their virtu
internal bonding method, constitutive relation was modified
include a failure criterion and a crack propagation occurs wit
elements instead of along element boundaries.

3.2 Derivation and Formulation of Cohesive Model. In
this study, we follow the model which was originally develope
by Xu and Needleman@5#. Camacho and Ortiz@6# also introduced
a slightly different type of cohesive model in their success
analysis of dynamic impact of brittle material. In general, t
cohesive element acts as a nonlinear spring and the crack gr
criterion is embedded in its constitutive equation. The tractio
displacement relation of the spring element is defined throug
potential functionF. Since the energy required to separate tw
nodes is equivalent to the integral of traction over displacem
this F directly relates to the fracture energy of growing crack. F
two-dimensional cracks, the crack may grow under mixed-mo
condition, and this potential function includes both the norm
~Mode I! and tangential~Mode II! contributions. The form is
shown as~@5#!,

F~dn ,d t!5FnH 11e2dn /dn* F S 11
dn

dn*
D ~q21!

2S 11
dn

dn*
D qe2~d t /d t* !2G J . (1)

Heredn andd t are the displacement components normal and t
gential to the crack plane, respectively. Alsodn* and d t* are the
reference displacements,Fn is the fracture or the total separatio
energy~per unit advance! required under pure Mode I conditio
~i.e., d t50! andq represents the ratio of the Mode II and Mode
fracture energies~i.e., q5F t /Fn!. If fracture toughness unde
Mode II condition is higher than that of Mode I condition, the
q.1. The normal and shear traction components relate to
displacement components as

Tn5
]F

]dn

5
Fn

dn*
e2dn /dn* @~dn /dn* !e2~d t /d t* !2

1~12q!~dn /dn* !~12e2~d t /d t* !2
!#

Tt5
]F

]d t
5

2Fnd t

~d t* !2 q~11dn /dn* !e2dn /dn* e2~d t /d t* !2
. (2)

Normalized displacement and traction relationships according
the above equations are shown in Fig. 1. For the normal com
nent, the maximum tractionTn

max5Fn /edn* occurs atdn5dn* while
the shear traction is maximumTt

max at d t5d t* /&. Note the refer-
ence tangential displacement is given asd t* 5A2edn* qTn

max/Tt
max.

In carrying out the crack growth analysis, the cohesive eleme
are placed along every element boundary where fracture may
cur. Essentially these nonlinear springs tie nodes of adjacent
ments. A potential source of error associated with the cohe
elements is thecomplianceintroduced between regular element
If the springs have a finite stiffness, the extra compliance
present along the element boundaries. When the total amou
this compliance is large, the overall structural response is ar
cially softened and an error arises. Alternatively, the cohes
energy stored in these elements can overwhelm the strain en
of structure@22#. In order to quantify the possible error associat
with the cohesive model, we have carried out a detailed e
analysis.
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4 Error Analysis of Cohesive Model

4.1 Computational Model. If the cohesive model is de
signed to simulate crack growth in brittle materials, its accura
can be measured with known solutions of growing linear ela
cracks. Here we have carried out an error analysis using a sim
crack model under pure Mode I loading condition. Suppose
separation energyFn in ~1! is kept constant everywhere in th
model, the crack must propagate under constant energy re
rate. This means once the energy release rateG reaches the critica
value Gc(5Fn) and the initiation occurs, the crack continues
grow at G5Gc . This condition is simulated with an edge-crac
specimen containing cohesive elements.

Under pure Mode I condition (d t50), the normal traction-
displacement relation~2! reduces to

Tn5Fn~dn /dn*
2!e2dn /dn* . (3)

It is clear from the above equation, complete nonlinear spr
properties are defined byFn anddn* . SinceFn corresponds to the
material’s critical fracture toughnessGc , the reference displace
mentdn* is the only parameter which can be set arbitrarily. On
dn* is chosen, the maximum tractionTn

max as well as the stiffness
of the cohesive model are also defined. According to~3!, a small
dn* translates to a large initialTn–dn slope or spring stiffness
Since the stiffness of element boundaries is ideally infinite bef
crack growth, it suggests thatdn* be set as small as possible~i.e.,
dn* →0!. In fact, any compliance (dn* Þ0) introduced by the co-
hesive elements in a region without cracks may erroneously
duce the entire model response. However, in quasi-static ana
with a common iterative scheme~e.g., Newton-Raphson!, it is

Fig. 1 Relationships between normalized displacement and
traction used cohesive model. The shaded areas represent the
fracture energy. „a… Normal component for Mode I, „b… tangen-
tial component for Mode II.
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difficult to achieve numerical convergence underdn* →0 condi-
tion. The numerical instability arises from the abrupt change
the tangent/slope of traction-displacement curve atdn5dn* as
shown in Fig. 1~a!. As dn* →0, the rate of change increases. Th
means, while a smallerdn* is desirable in reducing the artificia
compliance, it worsens the convergence rate during iterative t
integration. In general, the numerical instability cannot be
solved with taking smaller load increments. Furthermore, the
bility condition worsens when smaller elements are used n
crack tips. We note that the linear or extrinsic tractio
displacement relation~Tn

max at dn50! such as developed by Ca
macho and Ortiz@6# limits any unwanted compliance in th
model. However, in many crack problems, such a relation can
be used in conjunction with an implicit code where iterations
carried out to achieve the equilibrium. Regardless of models
sudden introduction of active cohesive elements initiates a
merical instability. In order to avoid this condition, an initial stif
ness of cohesive element must be set finite. Many past anal
with cohesive elements were carried out with explicit central d
ference scheme under dynamic conditions where no iterat
were needed.

Here we tested several different values ofdn* to investigate the
level of error generated by nonzerodn* . In the error analysis, a
cantilever-type edge-crack specimen as shown in Fig. 2~a! is con-
sidered. The specimen is loaded by the displacementD prescribed
at the edges. When the energy release rate reaches the c
value, the crack begins to grow. During the propagation, the
ergy release rate remains at the constant level in an ideally br
solid. Due to the symmetry condition, only the top half of th
specimen is modeled. A total of 19,200 four-noded element
used to construct the finite element mesh. As shown in Fig. 2~b!,
elements in the vicinity of the crack tip are kept square at a c
stant scale. The side-length of those elements are set al tip
50.0025W, whereW is the width of the specimen. The mode
dimensions are selected carefully to minimize the boundary eff

Fig. 2 „a… Schematic of edge-crack panel used in the error
analysis. „b… Top-half of finite element mesh near crack tip. All
the elements in this zone are shaped square with the side
length equal to 1 Õ400 of the panel width.
Transactions of the ASME
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First, we chose the crack to propagate over 100 elements or a
25 percent of the widthW. The lead to the initial crack length to
be a050.375W. The half-height is also as 0.375W so that the
growing crack tip is at least the same distance away from o
surface. Suppose the K-field size is about 1/10 of this length, t
it spans at least 15 elements in any directions. This means
solutions should be nearly independent of geometry and the n
tip element size is the onlylength scalethat influences the accu
racy of the cohesive model.

4.2 Dimensional Analysis. Under Mode I loading condi-
tion, the parameters that can influence the computed results
the Young’s modulusE, the Poisson’s ration, the normal separa
tion energyFn , the reference displacementdn* , and the near-tip
element lengthl tip . Based on dimensional consideration, the er
function E can be expressed as

E5E~dn* / l tip ,E/Fnl tip ,n!. (4)

The primary error arises in the cohesive model due to the pres
of extra compliance introduced along element boundaries. T
means the magnitude of the error scales with the relative stiffn
of the cohesive element (]Tn /]dn) with respect to the materia
modulus ~E!. The average stiffness of cohesive element bef
reaching the maximum traction isTn

maxltip /dn* or it is proportional
to Fnl tip /dn*

2. Using this expression, the error associated with
cohesive elements can be given as a function of the normal
stiffness as

E'ES Fnl tip

Edn*
2 D . (5)

The error in the energy release rate can be obtained by cons
ing the cumulative stiffnessScoh of all cohesive elements. We ca
assume normalizedScoh to be approximated with one-term powe
law expression as

Scoh

S
'aS Fnl tip

Edn*
2 D b

. (6)

Here S is the overall structural stiffness without cohesive e
ments,a andb are the factors which depend on locations and to
number of cohesive elements and assumed to bea.0 and b
.0. Any effects of the Poisson’s ratio are implicitly included
these terms. Using the above approximation, the dimension
error in G can be expressed as

EG5
Gideal2Gcoh

Gideal
5

S

S1Scoh
'FaS Fnl tip

Edn*
2 D b

11G21

. (7)

Here, Gideal corresponds to the exact solution for ideally britt
solids and a displacement-controlled loading condition is assu
in deriving the expression. In~7!, the error is directly influenced
by the reference displacementdn* chosen for the cohesive ele
ments. Note asdn* →0, the error vanishes. The values ofa andb
can be determined from the computations of the test problem
comparison with the ideal solutions. We also note that the ab
expression is valid for the error evaluation of other types
traction-displacement relations for cohesive elements. For
ample, if the relation is given by bilinear curves as by Guebe
and Baylor@7#, the displacement at the peak load can be sub
tuted fordn* in ~7!.

4.3 Computational Results. In placing the cohesive ele
ments within the crack model, three separate cases are consid
They differ in domain sizes where the elements are included.
domains are, Case A—only along the crack propagation path~i.e.,
symmetry line!, Case B—within a smaller domain surroundin
the crack tip, and Case C—within a larger domain surrounding
crack tip. These domains are illustrated in Fig. 3. The cohes
spring elements are added along every element boundary w
the respective domains. There are 150, 4,437, and 10,577 coh
Journal of Applied Mechanics
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elements in Cases A, B, and C, respectively. It is expected tha
the total number of cohesive element increases, the error
rises. During the analysis, the energy release rate is calculate
every time increment using the domain integral expression oG
~@23#!. In each model, computations are carried out with vario
dn* to determine the error parametersa andb in ~7!. Also in all
cases,q in ~1! is set to unity.

The results of the energy release rate with the cohesive
ments along crack path~Case A! are shown in Fig. 4~a!. As the
prescribed displacement increases,G increases until it reaches th
critical valueFn5Gc . For the ideally brittle solid, the crack ini
tiates and continues to grow at constantG as shown in the figure.
Although this condition may be simulated withdn* →0 in the co-
hesive elements, it is difficult to obtain converged solutions fo
very smalldn* in an implicit integration~e.g., Newton-Raphson!.
In the present model, the numerical instability occurs wh
dn* / l tip,1.431023. When smaller values are assigned todn* , the
equilibrium convergence cannot be achieved even with very sm
increment sizes. The maximum difference between the ide
brittle solid and the cohesive models occurs at the crack gro
initiation point (D/ l tip50.0498). Based on the results of differe

Fig. 3 Three cases with different domains where cohesive el-
ements are placed. „a… Case A with cohesive elements only
along the crack path; „b… Case B with cohesive elements in
0.04WÃ0.38W domain; „c… Case C with cohesive elements in
0.1WÃ0.38W domain.
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values ofdn* , the parameters in~7! can be approximated asa
527 andb50.6. With these values, the error at the initiation c
be expressed as

EG
max5

Gideal2Gcoh

Gideal
U

initiation

'F27S Fnl tip

Edn*
2 D 0.6

11G21

. (8)

Note that the above error is the maximum error at the cr
growth initiation. In fact, as the crack propagates substantially,
energy release rate of every cohesive model converges to the
case. Although not shown here, we have tested other values odn*
and found the expression~8! to hold for a wide range ofdn* .
Different values ofE were also shown to agree well with the err
estimate. In addition, we have inspected the load-displacem
relation of the growing crack model as shown in Fig. 4~b!. HereP
is the reaction force at the prescribed displacement. Without
cohesive elements, theP–D curve has a sharp peak at the initi
tion point (D/ l tip50.0498). When the cohesive elements are
cluded, the structural stiffness is reduced and the maximum
is lowered as shown in the figure. The increased compliance o
cohesive models is also evident from the reduced slopes ofP–D
curves. The difference in the peak load can be shown with
error expression similar to~7!.

The accuracy of crack growthDa is examined in Fig. 5~a!.
During crack propagation, there are usually several active co
sive elements withdn.0 andTn.0 along the crack path and th
determination of the crack-tip location is difficult. In order
clarify this problem, we have operationally defined the tip locat
by the following method. First we assume that Mode I K-fie

Fig. 4 Computed results for various reference displacements
dn* in Case A. „a… Normalized energy release rate shown as a
function of normalized prescribed displacement, „b… normal-
ized load shown as a function of normalized prescribed dis-
placement.
246 Õ Vol. 68, MARCH 2001
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surrounds elements near the crack tip and the opening stress a
of the crack to be square-root singular in radial distance. W
four-noded isoparametric elements in our model, an equiva
nodal force due to the singular stress can be determined by
grating the stress with linear interpolation/weighting function
The force can be calculated for a node located at an arbit
distance away from the tip. The maximum force is attained wh
the node is locatedl tip/3 ahead of the presumed crack-tip locatio
If the crack propagates and coincides with the node, the no
force is reduced to 86.6 percent of the maximum value. Accord
to Fig. 1~a!, 0.866Tn

max occurs atdn /dn* 51.64 in the cohesive
elements. Also at this point, the fracture energy is 48 percen
the critical energy orF50.48Fn . SinceF is also applicable in
mixed-mode cases, this value is monitored throughout our an
ses to identify the location of crack tip. We note that Xu a
Needleman@5# useddn /dn* '1 and Needleman and Rosakis@24#
useddn /dn* 55 to define the crack-tip location. The crack exte
sion is shown as a function of the prescribed displacement in
5~a!. Better agreements with the ideally brittle solution can
observed with smallerdn* . With largerdn* ~e.g.,dn* / l tip50.004!,
the initial crack growth occurs prematurely beforeG reaches the
critical value. However, all models converge to the ideal solut
at largerD. These results confirm the suitability of the definitio
used for the crack-tip location. In Fig. 5~b!, the normalized energy
release rate is shown as a function of crack growth normalized
the element length. The results showG of the cohesive models
approaches the ideal solution at larger crack growth. In fact, a
growth over several element lengths, the error is significantly
duced.

Fig. 5 Computed results for various reference displacements
dn* in Case A. „a… Normalized crack advanced distance shown
as a function of normalized prescribed displacement, „b… nor-
malized energy release rate shown as a function of normalized
crack advance distance.
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The computations are also carried out for the models w
larger cohesive element domains~Cases B and C!. Since much
more cohesive elements are present, the results are expect
deteriorate. Only the energy release rate as a function of the
scribed displacement is shown in Fig. 6. Unlike Case A, the c
culation diverges whendn* / l tip50.0014 is prescribed in both
cases. In Case B, the results still coincide with the ideal solu
but at a largerD as shown in Fig. 6~a!. The errors inG at the
initiation point are also much greater than those of Case A. S
lar results are obtained for Case C as shown in Fig. 6~b!. Based on
these results, we have again computed the error parameters i~7!.
The proportional factora is 9.5 and 5.3 for Cases A and B, re
spectively. The power coefficientb appears to remain constant
0.6 in both cases.

The present analysis has quantified the error due to the cohe
elements in a crack propagation analysis. The size of erro
related to the total number of cohesive elements as well as
choice of reference displacementdn* . In order to minimize the
error, the reference displacementdn* must be kept small. How-
ever, the possible size ofdn* is restricted by the convergence co
dition of the implicit time integration scheme. Prior to any cra
propagation analyses, an error for a givendn* can be estimated
with the simple formula introduced in~7!. It was observed tha
while the parametera depends on the total number of cohesi
elements, the other parameterb appears to be constant at 0.6. T
parametera decreases with greater number of cohesive elem
in the model here. Although the error analysis is carried out w
an edge-crack model, the present error estimates should be a
cable to other models as long as the K-field is sufficiently lar
than near-tip element sizes.

Fig. 6 Normalized energy release rate for various reference
displacements dn* . „a… Case B, „b… Case C.
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5 Crack Propgation in Porous Materials

5.1 Computational Models for Porous Coatings. In order
to construct the unique microstructures of plasma sprayed coa
it is necessary to establish a model which allows for random
tributions of numerous pores with various sizes and aspect ra
Within the model, pores are placed at random locations, and e
pore is assumed to possess three additional geometrical attrib
pore size/area, pore shape, or aspect ratio, and pore orient
with respect to the spray direction. A computational program
been developed to generate finite element models which simu
coatings with such attributes. This procedure is a modification
the one developed by Nakamura et al.@3# to investigate the effec-
tive properties of porous materials. This procedure is briefly d
cussed below.

First, all the pore shapes are idealized to be hexagonal.
size/area is assumed to range fromAmin to 10Amin whereAmin is
chosen to be about 80mm2. Any pores which have less area hav
a very small influence on the overall response. Also the asp
ratios of pores are set to vary froma/b51 to 10 ~a and b are
major and minor axes!. Furthermore, instead of allowing continu
ous variations in the area and the aspect ratio, we have used
distinct pore areas,A/Amin51, 2, 4, 6, and 10 and five aspe
ratios a/b51, 2, 4, 6, and 10. Therefore, there are 25 possi
types of pores varying in area and shape. Categorizing pores
25 types enables us to assign various weight factors to the
types. The weights are set to the pore size and shape distribu

Fig. 7 „a… Schematic of panel with porous material under ten-
sile load. The starter crack is placed in the center of the panel.
„b… Finite element mesh. Regions with porous elements are in-
dicated.
MARCH 2001, Vol. 68 Õ 247
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of alumina-titania coatings given by Leigh and Berndt@4#. In
addition to the variations in shapes and sizes, every pore is rot
by an arbitrary angle. In carrying out the analysis, the mesh de
has shown to possess a significant effect on the computati
accuracy. The elements near the crack path must be sufficie
small to capture accurate crack propagation behavior. We h
tried several mesh designs to minimize mesh dependence. H
ever, detailed mesh convergence and error analyses are not c
out with the porous models due to the computational limitati
The inclusions of cohesive elements significantly increase
model size and the computations would require beyond our av
able computational resources.

All the solid elements are chosen to be four-noded plane-st
elements. The matrix or pore-free modulus is chosen from
nano-indentation test data and set as 150 GPa~@25#!. Although the
bulk elastic modulus of alumina-titania is much higher, sp
boundaries, impurities, and other factors unique to therm
sprayed coatings contribute to this lower modulus. The ma
Poisson’s ratio is chosen to ben50.25. In the first case of the
coating model analysis, the crack propagation under far-fi
uniaxial tensile condition is examined. In the second case,
crack is propagated by the residual stresses generated by th
mismatch in a multilayered model.

5.2 Crack Propagation Under Tensile Load. For the
simulation of crack propagation under tensile load, a rectang
plate as shown in Fig. 7~a! is considered. The shapes and sizes
pores follow the measured distribution of sprayed alumina-tita
There is a total of 72 pores in the model. The location of ea
pore is chosen arbitrarily using a random generator program
cept for the horizontal ‘‘starter pore/crack’’ located in the cen
of the model. The starter pore is placed to initiate crack propa
tion and it has the lengtha5100mm and aspect ratioa/b510.

Fig. 8 Sequences of crack growth at three levels of prescribed
displacements. Only the region near the starter crack is shown
for clarity. The starter crack grows toward neighboring pores.
248 Õ Vol. 68, MARCH 2001
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The porosity of the model is 7.5 percent and the effective ela
modulus and Poisson’s ratio are separately calculated asEeff
5108 GPa andneff50.21, respectively. These values are obtain
from the extension and lateral contraction of the model un
uniaxially loaded condition. The 28 percent drop in the Young
modulus is attributed to the pores in the material. A finite elem
mesh is constructed with about 10,000 elements as shown in
7~b!. The average element size near the starter pore is 3mm.
Following the results of the error analysis, cohesive elements
placed within selected regions instead of the entire plate. Since
crack propagation is designed to occur at the center, two sepa
domains at both sides of the starter crack are chosen for the
hesive elements as shown in Fig. 7~b!. The critical fracture energy
is assumed to beFn510 J/m2 and the minimum reference dis
placement before the instability is found to bedn* 50.1mm. Un-
like the error analysis, the element sizes are not small eno
compared to the pore/crack sizes and the assumed K-field
This means the error approximation formula is not applica
here. However, if respective values are assigned, the maxim
error is about 30 percent in~8!.

The porous material is loaded gradually by increasing the
placement along the top and bottom boundaries of the model.
sequences of the crack propagation are illustrated in Fig. 8.
starter crack begins to grow when the prescribed displacem
reachesD50.6mm. Initially the right tip propagates toward th
neighboring pore on the right side. At aboutD50.7mm, the crack
and the pore coalesce to form a longer crack. The effective cr
length which measures the crack length projected onto the h
zontal axis is denoted byaeff . At higher load, the crack grows
toward the nearest pore on the left side. However, the coalesc

Fig. 9 Computed results of porous material under tensile load.
„a… Load versus displacement. A small drop in the load is due
to a large jump in crack length. „b… Effective crack length „crack
length profile … versus displacement.
Transactions of the ASME
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with this pore does not occur during the calculation. One so
element is trapped between the cracks extending from the ce
crack and the left pore. The relationship between the reac
force and prescribed displacement is shown in Fig. 9~a!. Here the
relation is nearly linear except nearD50.7mm where a small
load drop is observed. This point corresponds to the coalesc
of the crack and the pore. The effective crack length is also sh
as a function of prescribed displacement in Fig. 9~b!. Due to the
porous structure, the crack growth occurs nonuniformly. A la
jump in aeff corresponds to the crack coalescence with the ne
boring pore.

5.3 Crack Propagation Under Thermal Load. Many ther-
mally sprayed ceramic coatings are used as thermal barrie
high-temperature environments. The porous microstructure
vides increased insulation for the substrate material. In gen
metallic bond coat is sprayed onto the substrate followed by
ramic coating. A typical multilayered model for the thermal ba
rier coating is illustrated in Fig. 10~a!. Here the width of the
model is 1 mm while the steel substrate has the thickness
mm. These dimensions are large enough so that the bound
have limited effect on the crack propagation behavior. In additi
both sides of the model are constrained to remain straight to
resent the symmetry condition.

Due to the thermal stresses generated by the material mism
a crack propagation can occur under temperature changes.
ceramic coating is assumed to be elastic while the bond and
strate materials are modeled as elastic-perfectly plastic. The
trix properties of the ceramic (Al2O3–TiO2) is E5150 GPa,n

Fig. 10 „a… Schematic of multilayered model with porous coat-
ings. Regions with cohesive elements are indicated. „b… Top
part of finite element mesh for the multilayered model.
Journal of Applied Mechanics
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50.25, a58.231026 wherea is the coefficient of thermal ex-
pansion. The properties of bond coat~NiCrAlY ! and the steel
substrate areE580 GPa,n50.25,a51331026, so5200 MPa,
and areE580 GPa,n50.3, a512.531026, so5800 MPa, re-
spectively. Hereso is the yield stress. All the material propertie
are temperature and time independent. For the ceramic coa
the shape and size distributions of pores again follow those
alumina-titania. There are total of 72 pores in the model and
porosity is 7.5 percent. As in the tensile load case, a slightly til
starter pore witha5100mm is placed in the center of the mode
The effective elastic modulus and Poisson’s ratio are calculate
Eeff5108 GPa andveff50.21, respectively. To facilitate the crac
growth, the starter pore is oriented close to the vertical direct
Under thermal loading, large residual stress is expected in
direction parallel to the layer boundaries. There is total of ab
13,000 four-node elements and the average element size nea
starter pore is 2mm. Finite element mesh for the top part of th
multilayered model is shown in Fig. 10~b!. Cohesive elements ar
placed within the two separate regions at both sides of the sta
crack as shown in Fig. 10~a!. The critical fracture energy in ten
sion is again chosen to beFn510 J/m2 and the reference displace
ment is set atdn* 50.35mm, which is the minimum displacemen
for convergence. During the calculation, the temperature is u
formly increased to generate tensile residual stresses within
ceramic coating. No temperature variation within the model
considered in this analysis.

The evolution of crack growth within the ceramic coating
different temperatures is shown in Fig. 11. Crack growth initia
starts when the temperature reaches about 460°C. Both tips o
starter crack slowly grow toward the neighboring upper and low
pores, respectively. The coalescence of the crack and the lo
pore occurs at aboutDT5600°C. The residual stress within th
ceramic layer for the temperature range 300°C,DT,700°C is

Fig. 11 Sequences of crack growth at three levels of tempera-
tures. Only the ceramic coating is shown for clarity. The starter
crack grows toward neighboring pores.
MARCH 2001, Vol. 68 Õ 249
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shown in Fig. 12~a!. The normal stress along the horizontal dire
tion is averaged over the thickness of the ceramic layer. As
temperature rises, the residual thermal stress increases line
The effective crack length is also shown as a function of
temperature in Fig. 12~b!. As in the tensile model, the growth i
highly discontinuous. A big jump occurs when the coalesce
occurs nearDT5600°C. According to the present model, th
estimated crack length exceeds a half of the coating thickn
~400 mm! when DT is about 600°C. This temperature may b
regarded as the failure temperature of ceramic coating. We
that any rate-dependent effects at high temperature probabl
duce the residual stresses and may slow the crack propagation
in actual coatings. In addition, temperature variation throu
thickness can also alter the crack propagation behavior.

6 Discussions
Simulations of crack propagation within porous solids are c

ried out to explore the fracture behavior in a highly inhomog
neous material. Unlike homogeneous solids, the crack propaga
is nonuniform and influenced by pore arrangements. In the an
sis, cohesive elements are implemented to separate ele
boundaries during crack growth under quasi-static condition.
suitability and accuracy of the cohesive elements are closely
amined in our error analysis. In general, nonlinear constitu
relation of cohesive element initiates instability and creates c
vergence problems during equilibrium iterations. The numer
difficulties can be somewhat alleviated by introduction of artific
damping as shown by Zhang et al.@22#. However, we have found
a sufficient damping to overcome the instability can also dete

Fig. 12 Computed results of porous material under tempera-
ture increase. „a… average residual stress within porous ce-
ramic coating; „b… effective „apparent … crack length as a func-
tion of temperature.
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rate the accuracy of calculated results. Alternatively, the coe
cient of damping must be kept very low to avoid the error as
ciated with the artificial viscosity.

The cohesive model introduced by Xu and Needleman@5# of-
fers a convenient approach to simulate crack propagation.
model does not require a major modification of existing fin
element codes and only inclusion of nonlinear spring element
needed. However, the cohesive elements may introduce unwa
compliance and reduce the accuracy of calculated results. In
present study, the accuracy of cohesive elements in brittle c
propagation is carefully investigated. A formula for the appro
mated error is also introduced. The formula should be applica
for other cohesive models if their near-tip elements are su
ciently small compared to the K-field sizes. Our results sugg
the initial slope of traction-displacement curve to be set as st
as possible to minimize the error. However, the slope or the
erence displacement is also restricted by the convergence crite
stated above. Unfortunately, other types of traction-displacem
relation cannot alleviate this difficulty. In general, the tractio
based fracture initiation criterion introduced by Camacho and
tiz @6# also causes numerical instability when it is used with
implicit time integration scheme~e.g., Newton-Raphson! under
quasi-static conditions.

The analysis of crack propagation in porous materials offer
means to estimate the critical failure load or temperature. Pres
of various pores in thermally sprayed ceramic coatings not o
lowers the material stiffness but also reduces the fracture tou
ness. Our numerical model has simulated crack/pore coalesc
during propagation. It appears that the crack growth rate as we
the path is highly influenced by neighboring pores. The coalesc
mechanism in porous materials may explain the very brittle na
of sprayed ceramic coatings. We also note that the critical fail
loads found in terms of force or temperature probably repres
conservative estimates. Inclusion of the cohesive elements
creases the structural compliance and may underestimate the
ure loads.
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A New Method for Calculating
Bending Moment and Shear Force
in Moving Load Problems
In this paper, a new series expansion for calculating the bending moment and the
force in a proportionally damped, one-dimensional distributed parameter system d
moving loads is suggested. The number of moving forces, which may be functions o
and spatial coordinate, and their velocities are arbitrary. The derivation of the se
expansion is not limited to moving forces that are a priori known, making this me
also applicable to problems in which the moving forces depend on the interaction
tween the continuous system and the subsystems it carries, e.g., the moving os
problem. A main advantage of the proposed method is in the accurate and effi
evaluation of the bending moment and shear force, and in particular, the shear jum
the locations where the moving forces are applied. Numerical results are present
demonstrate the rapid convergence of the new series representation.
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1 Introduction
The problem of loads traveling along a distributed parame

system is commonly encountered in many important enginee
systems. Examples include the design of railroad tracks with h
speed trains and highway bridges with moving vehicles~@1,2#!,
high-speed precision machining~@3#!, circular saw blades~@4#!
computer disk drives~@5#!, and cables transporting human
materials~@6#!. The accurate prediction of the stresses develo
in the continuous system due to moving loads is crucial a
miscalculation may lead to undesirable human casualty and
of important data and information. The collapse of the U.S. Sil
Bridge in 1967 that claimed 46 lives remains a chilling warning
bridge design engineers~@7#!.

In this paper, a new method is proposed to calculate the be
ing moment and shear force of a proportionally damped beam
to moving concentrated loads. The term ‘‘moving concentra
load’’ is used to denote either a moving force that is a pri
known or one that depends on the interactions between the b
and the moving subsystems it carries. Hereafter, when the mo
force is a priori known, the problem is termed the ‘‘moving for
problem.’’ The solution in the form of a series representation
first derived for arbitrary moving forces and then extended to
moving oscillator problem in which the moving forces depend
the responses of the beam and oscillators.

It was shown that the response and slope of the beam ca
accurately determined by using only few terms of a conventio
eigenfunction series~@8–10#!. However, higher order derivative
of the series~required for calculating the bending moment a
shear force! converge poorly and cannot capture the jumps in
shear forces. In this work, the eigenfunction expansion is
proved by a ‘‘correction function’’ which bears information abo
the shear force jumps at the locations where the moving loads
applied and includes the contributions of the truncated hig
modes in the series. This results in a better and more effic
evaluation of the bending moment and shear force.

The genesis of this technique can be traced to accelerating

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ja
10, 2000; final revision, Aug. 18, 2000. Associate Editor: A. K. Mal. Discussion
the paper should be addressed to the Editor, Professor Lewis T. Wheeler, Depa
of Mechanical Engineering, University of Houston, Houston, TX 77204-4792,
will be accepted until four months after final publication of the paper itself in
ASME JOURNAL OF APPLIED MECHANICS.
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convergence of the modal series~spectral! representation for the
Green’s function~or dynamic flexibility or reacceptance! which
has been known for some years as the ‘‘mode-accelerati
method ~@11#!. Interested readers are referred to the papers
Dowell @12# Palazzolo et al.,@13# ~general case of a nonconserv
tive finite-dimensional system!, Pesterev and Tavrizov@14# ~free-
free conservative distributed parameter systems!, and the refer-
ences therein. The mode-acceleration technique has been ap
to problems related to the steady-state vibration of structures
to harmonic excitations. However, the extension of this techni
to the moving loads problem~which is transient in nature! is not
trivial and has not been discussed. As discussed in Palazzolo
@13#, the improved representation for receptances can be
pressed in two equivalent forms:~1! in terms of a series with
accelerated convergence or~2! as the sum of a conventional spe
tral representation and a ‘‘residual flexibility’’ which accounts f
the truncated higher order modes. The ‘‘correction function’’ d
rived in this paper may thus be viewed as an extension of
notion of residual flexibility for moving load problems.

This paper is organized as follows. In the next section, a ma
ematical formulation of the problem is given. In Section 3, r
sponse solution for damped continua in terms of the conventio
series is discussed and the modal representation for the s
Green’s function is given. The improved series representation
a proportionally damped beam is derived in Section 4. In Sec
5, the application of the method to the moving oscillators probl
is discussed. The efficiency of the new representation is illustra
by numerical results in Section 6.

2 Problem Statement
The vibration of a spatially one-dimensional, damped distr

uted parameter system due to moving loads is governed by

r
]2

]t2 w~x,t !1D
]

]t
w~x,t !1Kw~x,t !

5(
i 51

l

Fi~x,t !d~x2z i~ t !!, xP@0,L#, (1)

subject to given boundary and initial conditions. Here,L is the
length of the continuum;w(x,t) is the transverse displacement
the continuum;r, D, andK are spatial differential operators rep
resenting inertia, damping, and stiffness of the system, res
tively, r andK are positive definite andD is positive semidefinite;
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d(x) is the Dirac delta-function; andz i(t) are the time-dependen
coordinates at which the forces are applied. The functionsFi(x,t)
are assumed to be twice differentiable with respect to both a
ments for 0,x,L and for t satisfying the inequalities 0,z i(t)
,L, and are not required to be a priori known. In this work, w
restrict our consideration to systems with stiffness operator
order four. The reason for this is explained in Section 4.3.

We consider homogeneous boundary conditions and, in par
lar, assume that the continuum has no rigid-body modes an
ends are fixed,w(0,t)5w(L,t)50. We further assume zero initia
conditions, which implies that the continuum is at rest fort<0.
Note that this assumption merely simplifies the notation and d
not affect the idea behind the development of the new series
resentation. We first consider the case of one force moving wi
constant velocityv; i.e., l 51 andz1(t)5vt. This requirement, in
fact, is not needed for the analysis, and the resulting equation
easily extended to the case of many forces moving with arbitra
varying velocities~see Remarks 2 and 3 in Section 4.4!.

It is well known that the solution to Eq.~1! can be expanded in
terms of the eigenfunctions of the distributed system. Howeve
disadvantage of using this expansion is the poor convergenc
the series in calculating the bending moment and shear force
cause of the moving singularities on the right-hand side of Eq.~1!.
As a result, these calculations are prohibitedly expensive in te
of the number of terms required. In what follows, a ‘‘correctio
function’’ is derived to accelerate the convergence of the ser
which is expressed in terms of the static Green’s function of
continuum and its modal parameters. When deriving the impro
series representation, we need some results concerning the
ventional series expansion, which are summarized in the n
section.

3 Conventional Series Expansion
In view of the assumptions stated above, we will look for s

lution to the equation

r
]2

]t2 w~x,t !1D
]

]t
w~x,t !1Kw~x,t !5F~x,t !d~x2vt ! (2)

subject to given homogeneous boundary and zero in
conditions.

3.1 General Case of Damping. It is well known that the
solution to Eq.~2! can be written in terms of the dynamic Green
function g(x,h,t) of the distributed system as~see, e.g.,@15#!

w~x,t !5E
2`

t

dtE
0

L

g~x,h,t2t!F~h,t!d~h2vt!dh

[E
2`

t

g~x,vt,t2t!F~vt,t!dt. (3)

In practice, the Green’s function is represented by the trunca
modal series

g~x,h,t !5
1

2 (
n561

6N
1

ln
elntwn~x!wn~h!

5(
n51

N

ReF 1

ln
elntwn~x!wn~h!G , (4)

where complexln andwn(x) are, respectively, thenth eigenvalue
and eigenfunction of the distributed system. In addition,wn(x)
must satisfy the normalization condition~@15#!

E
0

L

wn~x!rwn~x!dx2
1

ln
2 E

0

L

wn~x!Kwn~x!dx52. (5)

Thus, we arrive at the approximation of the response of the sys
by the series expansion
Journal of Applied Mechanics
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w~x,t !5(
n51

N

Re@wn~x!qn~ t !#, (6)

where the time-dependent coefficientsqn(t) are given by

qn~ t !5
1

ln
E

0

t

eln~ t2t!wn~vt!F~vt,t!dt. (7)

3.2 Static Green’s Function. By definition, the static
Green’s functionG(x,j) is the solution to the equation

KG~x,j!5d~x2j! (8)

and, for a fixed value ofj, 0,j,L, satisfies the given boundar
conditions. For a string or a beam with arbitrary boundary con
tions, the static Green’s functionG(x,j) can easily be obtained
either in the form of a polynomial~see, e.g., Appendix II of@16#!
for a uniform structure or in terms of quadratures for nonunifo
structures.

In what follows, we will also need the modal series represen
tion for the static Green’s function. It is given in terms of th
eigenvaluesl̃n5 i ṽn and eigenfunctionsw̃n(x) of the conserva-
tive continuum associated with the damped one under consi
ation, which are solutions to the eigenvalue problem

$l̃n
2r1K%w̃n~x!50, (9)

and w̃n(x) satisfy the conventional orthonormality relations f
conservative systems

E
0

L

w̃n~x!rw̃ j~x!dx5dn j , , (10)

wheredn j is the Kronecker delta. Thus,G(x,j) can be approxi-
mated by the modal series

G~x,j!5(
n51

N
w̃n~x!w̃n~j!

ṽn
2

[(
n51

N
w̃n~x!w̃n~j!

lnl̄n

. (11)

The derivation of the improved solution relies on the modal se
representations for the dynamic and static Green’s functions
can be seen from~4! and ~11!, these representations are given
terms of different sets of eigenfunctions, which makes the anal
of the general case of damping in the system rather complica
In this work, we confine our efforts to the case of a proportiona
damped continuum, for which the relationship between these
can be easily found.

3.3 Proportionally Damped Continuum. It is well known
~@17,18#! that, if the system is proportionally damped, the syst
eigenvalues are complex,ln5an1 ivn , but the eigenfunctions
can be taken as real. However, as can be easily seen, no
functions satisfy the normalization condition~5! ~since lns are
complex!, and we need either to use complex eigenfunctions
take advantage of the modal series representation~4! for the dy-
namic Green’s function or to find its equivalent representation
terms of the real eigenfunctionsw̃n(x). We will look for the
eigenfunctions of the damped system in the form

wn~x!5cnw̃n~x!, (12)

with a complex multipliercn being chosen from the condition tha
wn(x) satisfies~5!. Substituting~12! into ~5! and using Eq.~9! and
the relationl̃n

252lnl̄n , we find thatcn
252 iln /vn .

Substituting~12! into ~4!, we get the modal series represent
tion for the dynamic Green’s function in terms of the real eige
functions of the corresponding conservative continuum as

g~x,h,t !5(
n51

N

ReF 1

ivn
elntG w̃n~x!w̃n~h!. (13)

The solution to Eq.~2! is given then by
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w~x,t !5(
n51

N

w̃n~x!qn
R~ t ! (14)

whereqn
R(t) is the real part of the integral

qn~ t !5
1

ivn
E

0

t

eln~ t2t!w̃n~vt!F~vt,t!dt. (15)

The slope, bending moment, and shear force are obtained b
term-wise differentiation of the series in~14! with respect tox.
For example, the shear force for a uniform beam is given by

EIwxxx~x,t !5(
n51

N

EIw̃n-~x!qn
R~ t ! , (16)

whereEI is the flexural rigidity of the beam. As mentioned befor
because of the jump in the shear force, series~16! converges
poorly and an accurate approximation of the shear force requir
large number of terms in the series. In the next section, we de
a new representation which explicitly takes into account t
jump.

4 Improved Solution Representation for a Proportion-
ally Damped Beam

4.1 General Idea of the Approach to be Used. As afore-
mentioned, the poor convergence of series~16! is associated with
the moving singularity on the right-hand side of Eq.~2!. This
suggests that one possible way to improve the solution is to tr
remove the singularity, i.e., to reduce the problem to that of fi
ing the solution of the original equation with the right-hand si
free of the moving singularity. This can be achieved if the desi
solution is represented as a sum of two functions such that on
these functions is ‘‘responsible’’ for the singularity and can eas
be determined. Then, the second function satisfies the orig
equation with the right-hand side free of the singularity and, th
can be better approximated by the series in terms of the c
tinuum eigenfunctions. To remove the moving singularity, t
concept of quasi-static solution introduced in Pesterev and B
man~@16#! for the case of a constant moving force is extended
the case of varying moving forces.

4.2 Quasi-Static Solution. The quasi-static solution
wqs(x,t) is defined as

wqs~x,t !5F~vt,t !G~x,vt !@h~ t !2h~ t2L/v !#, (17)

whereh(t) is the Heaviside unit step function. In view of~8!, it is
evident that this function satisfies the equation

Kwqs~x,t !5F~x,t !d~x2vt ! (18)

and gives the response of the distributed system due to the mo
force F(x,t) if we neglect the inertia of the system.

4.3 Derivation of the Improved Representation. We will
look for the solution to problem~2! in the interval@0,L/v# in the
form

w~x,t !5w̃~x,t !1wqs~x,t !. (19)

Introducing the notation

H~x,t !5F~vt,t !G~x,vt !, (20)

we can write the quasi-static solution fort,L/v as

wqs~x,t !5H~x,t !h~ t !. (21)

The substitution of~19! into ~2! with regard to~18!, ~20!, and~21!
results in the equation
254 Õ Vol. 68, MARCH 2001
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r
]2

]t2 w̃~x,t !1D
]

]t
w̃~x,t !1Kw̃~x,t !

52r~Htt~x,t !h~ t !12Ht~x,t !d~ t !1H~x,t !d8~ t !!

2D~Ht~x,t !h~ t !1H~x,t !d~ t !!, (22)

whereHt(x,t) and Htt(x,t) are the first and second derivative
respectively, ofH(x,t) with respect to time. If the order of the
highest derivative in the stiffness operator is four, then the rig
hand side of Eq.~22! has no moving singularity, and hence, th
function w̃(x,t) can be better approximated by the series in ter
of the eigenfunctions of the continuum compared tow(x,t). The
condition imposed on the stiffness operator is essential. Ind
the functionHtt(x,t) contains the second derivative of the sta
Green’s function with respect to the second variable,Gjj(x,vt).
If the differential order of the stiffness operatorK is two, then it
follows from Eq.~8! and the symmetry ofG(x,j) that the right-
hand side of~22! contains a moving singularity, the functio
d(x2vt). This implies that the method to be presented canno
directly applied~at least, in the form described below! to systems
that have differential stiffness operator of order two, e.g.,
strings or rods.

We will expand the solution to~22! in the series ofN eigen-
functions of the distributed system and write it in the form

w̃~x,t !52E
2`

t

dtE
0

L

g~x,h,t2t!r~Htt~h,t!h~t!

12Ht~h,t!d~t!1H~h,t!d8~t!!dh

2E
2`

t

dtE
0

L

g~x,h,t2t!D~Ht~h,t!h~t!

1H~h,t!d~t!!dh, (23)

where g(x,h,t) is given by ~13!. By using the integration by
parts, the right-hand side of Eq.~23! can be transformed to a form
free of delta-functions and derivatives ofH(x,t),

w̃~x,t !52E
0

L

gt~x,h,0!rH~h,t !dh2E
0

t

dtE
0

L

gtt~x,h,t2t!

3rH~h,t!dh2E
0

t

dtE
0

L

gt~x,h,t2t!DH~h,t!dh.

(24)

The proof of this is given in the Appendix.
Now, we apply modal series representations~11! and ~13!, to

evaluate the integrals overh on the right-hand side of~24!. Using
orthogonality relations~10!, we find that

E
0

L

gt~x,h,0!rH~h,t !dh5F~vt,t !(
n51

N
w̃n~x!w̃n~vt !

lnl̄n

. (25)

Similarly,

E
0

L

gtt~x,h,t2t!rH~h,t!dh

5F~vt,t!(
n51

N

ReF ln

ivnl̄n

eln~ t2t!G w̃n~x!w̃n~vt!. (26)

Using the equation*0
Lw̃n(x)Dw̃ j (x)dx522and jn , we find that
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L

gt~x,h,t2t!DH~h,t!dh

52F~vt,t!(
n51

N

ReF 2an

ivnl̄n

eln~ t2t!G w̃n~x!w̃n~vt!. (27)

Adding integrals~26! and ~27!, we get

E
0

L

gtt~x,h,t2t!rH~h,t!dh1E
0

L

gt~x,h,t2t!DH~h,t!dh

5F~vt,t!(
n51

N

ReF 1

ivnl̄n

~ln22an!eln~ t2t!G w̃n~x!w̃n~vt!

52g~x,vt,t2t!F~vt,t!.

It follows from the last equation and Eqs.~24! and ~25! that

w̃~x,t !5E
0

t

g~x,vt,t2t!F~vt,t!dt2F~vt,t !(
n51

N
w̃n~x!w̃n~vt !

lnl̄n

5(
n51

N

w̃n~x!qn
R~ t !2F~vt,t !(

n51

N
w̃n~x!w̃n~vt !

ṽn
2

,

whereqn
R(t) is the real part of integral~15!. As can be seen, the

first term represents the conventional series expansion. U
~19!, we arrive at a compact formula for the desired solution

w~x,t !5(
n51

N

w̃n~x!qn
R~ t !

1F~vt,t !S G~x,vt !2(
n51

N
w̃n~x!w̃n~vt !

ṽn
2 D . (28)

4.4 Discussions and Extensions of the Improved Represen
tation. As can be seen from Eq.~28!, the improved solution
involves no additional computations compared to the conventio
series expansion~14!. The function in the parenthesis, which ma
be termedcorrection function, or dynamic flexibility, is easily cal-
culated given that the static Green’s function is known. This fu
tion bears information about the truncated higher modes.

Remark 1. In the above analysis, we considered the time
terval @0,L/v#, when the force is on the continuum. To extend
to the values of time greater thanL/v ~when the force leaves th
continuum!, we need to take into account both unit step functio
in the definition of the quasi-static solution~17!, which results in
the additional term

r~Htt~x,t !h~ t2L/v !12Ht~x,t !d~ t2L/v !1H~x,t !d8~ t2L/v !!

1D~Ht~x,t !h~ t2L/v !1H~x,t !d~ t2L/v !!

on the right-hand side of~22!. Repeating the above calculation
for this case and using additionally the assumption that the r
end of the continuum is fixed, we obtain, as could be expected
solution in the form of the conventional series

w~x,t !5(
n51

N

w̃n~x!qn
R~ t !, t.L/v,

where qn
R(t) is again given by the real part of~15! if we set

F(vt,t)50 for t.L/v. Equations~15! and ~28! can be made
valid for all values oft by the use of extended eigenfunction
introduced in Pesterev, et al.@19# i.e., for x,0 andx.L, w̃n(x)
[0 andG(x,j)[0.

Remark 2. Note that none of the derivations employ the a
sumption of constant velocity of the moving force. It can be eas
checked, that all calculations remain valid if the velocity varies.
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that case, we simply need to substitute the functionz(t) for vt in
~28! ~and to append the equation governing the variation ofz(t) if
this function is not specified explicitly!.

Remark 3. The case of many forces traversing the beam c
be treated in the same way as the case of one force. In view
Remarks 1 and 2, solution to Eq.~1!, for any t.0, can be written
in the form

w~x,t !5(
n51

N

w̃n~x!qn
R~ t !1(

i 51

l

Fi~z i~ t !,t !

3S G~x,z i~ t !!2(
n51

N
w̃n~x!w̃n~z i~ t !!

ṽn
2 D , (29)

where Eq.~15! for the time-dependent coefficientsqn(t) now
takes the form

qn~ t !5
1

ivn
E

0

t

eln~ t2t!(
j 51

l

w̃n~z j~t!!F j~z j~t!,t!dt.

Note that the use of the extended eigenfunctions~@19#! in the last
equation takes care of how many forces are on the beam
current timet such that the fact that a certainpth force has already
left the beam or has not come yet is automatically taken i
account since the functionsw j (zp(t)), j 51, . . . ,N, vanish in
these cases.

For a uniform beam, differentiating both sides of~29! gives the
improved representation for the bending moment

EIwxx~x,t !5EI(
n51

N

w̃n9~x!qn
R~ t !1(

i 51

l

Fi~z i~ t !,t !EI

3S Gxx~x,z i~ t !!2(
n51

N
w̃n9~x!w̃n~z i~ t !!

ṽn
2 D ,

(30)

and the shear force

EIwxxx~x,t !5EI(
n51

N

w̃n-~x!qn
R~ t !1(

i 51

l

Fi~z i~ t !,t !EI

3S Gxxx~x,z i~ t !!2(
n51

N
w̃n-~x!w̃n~z i~ t !!

ṽn
2 D .

(31)

The jumps in the shear force at the pointsxi(t)5z i(t) are calcu-
lated exactly by virtue of the static Green’s function and equa
Fi(z i(t),t), sinceEI(Gxxx(z i

1(t),z i(t))2Gxxx(z i
2(t),z i(t)))51.

5 Application to the Moving Oscillator Problem
The general formulas obtained in the previous section are v

independent of the fact whether the functionsFi(x,t) are a priori
known or not~we did not use the explicit dependence of the
functions on time or spatial coordinate!. If the functionsFi(x,t)
are a priori known, then the improved solution is obtained
easily as in the case of the constant moving force~@16#!. The
situation becomes more difficult if we deal with the moving o
cillator problem. In this case,Fi(x,t) depend on the response o
the continuum and on other unknowns such as vertical displa
ments of the oscillators, the equations for which are to be
pended to~1!. For example, for the problem where several co
servative oscillators traverse the continuum, we haveFi(x,t)
52mig2ki(w(x,t)2zi(t)), wheremi and ki are the mass and
the spring stiffness of thei th oscillator andzi(t) are the unknown
vertical displacements of the oscillators, which require additio
equations. For the problem of damped oscillators moving wit
constant velocityv along an even beam surface with the profi
«(x), Fi(x,t) are given by
MARCH 2001, Vol. 68 Õ 255
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Fi~x,t !52mig2ki~w~x,t !2zi~ t !!2ci

d

dt
~w~x,t !2zi~ t !!

2ki«~x!2civ«8~x!,

whereci are the damper coefficients. Thus, we see that, in ord
calculate the forcesFi(z i(t),t) acting on the beam at the points
the oscillator attachments, we need to know the displacemen
the beamw(z i(t),t) at these points, which, as can be seen fr
~29!, depend in their turn on the forcesFi(z i(t),t). Instead of
trying to find an accurate solution to this problem, we sugges
following approach.

The response and slope can be accurately determined by
the conventional series expansion~14!. The high accuracy of ca
culation is explained by the fast convergence of the series in
case of a beam~ṽns are proportional ton2! and is confirmed by
our previous results~@8–10#!. Since the interaction forces depe
on the beam response and, in the case of a damped oscillat
the slope of the beam, we suggest to first determine the force
using the conventional series~@19#!. Then, substitute the intera
tion forces obtained forFi(z i(t),t) into the improved represent
tions ~30! or ~31! to accurately calculate the bending momen
shear force. The program implementation of this approach is
tremely easy and suggests the use of the programs impleme
the earlier methods with the subsequent correction of the solu
obtained. The results of our numerical experiments shown in
next section demonstrate that the new series converges ra
which substantiates the efficiency of the new representation
justifies the use of the approach suggested above in the m
oscillator problem. Since the interaction forces are calculated
proximately, there may appear a question of whether the impr
series converges to the solution of Eq.~1!. This question is easil
answered. Indeed, let the numberN of the series go to infinity
Then, the function in the parentheses in~28! tends to zero~the
infinite series in the parenthesis equals the static Green’s
tion!, and the improved representation~28! reduces to the conven
tional series, which is known to converge to the desired solu
256 Õ Vol. 68, MARCH 2001
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6 Numerical Examples
The aim of our numerical experiments was to examine the c

vergence of the improved series representation~31! for the shear
force distribution and to provide comparison with the soluti
obtained through the use of the conventional series expans
The latter was calculated by the method described in Pesterev
Bergman@10#. We refer to this solution as ‘‘conventional solu
tion.’’ The solution obtained through the use of~31! is referred to
as the ‘‘new solution.’’ The static Green’s function of a simp
supported beam required in~31! was evaluated by means of th
analytical formula given in Pesterev and Bergman@16#.

We considered five damped oscillators with equal massem
traversing a simply supported damped beam with the velocitv
56 m/s and the arrival time intervals 0.2 s. The beam parame
are the same as those employed in Sadiku and Leipholz@20# and
in Pesterev and Bergman@8–10,16#: L56 m, EI/r
5275.4408 m4/s2, m/rL50.2. We introduced moderate propo
tional damping into the beam model by settingD/r52.0 s21 ~the
critical value of damping for this beam is equal to 9.1 s21! and
dampers in all oscillator models with the damping coefficientsci
52 N•s/m, such that the fourth oscillator is overdamped and
others are underdamped. The spring stiffness coefficients ark1
520, k2530, k3540, k454, andk5520~N/m!. The results re-
lated to this system are shown in Figs. 1–3. The forces acting
the beam from the oscillators~each force is the sum of the osci
lator weight and the elastic and damping forces! in the time inter-
val 0 and 1.8 s~when at least one oscillator is on the beam! were
calculated with the use of the conventional series expansion.
ure 1 shows the exact values of the forces~solid lines! and their
approximations by two terms of the series~dashed lines!. The
convergence of the conventional series for the response is so
that, beginning withN54, all approximations result in the sam
curves and may be considered as accurate. These forces an
time-dependent coefficientsqn(t) of the conventional series ex
pansion were substituted into Eq.~31! to calculate the shear forc
distribution att50.9 s by the proposed method. Figure 2 demo
strates the convergence of the new series expansion: the solid
Fig. 1 Forces acting on the beam from the oscillators
Transactions of the ASME
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Fig. 2 Shear force distribution at tÄ0.9 s: exact solution „solid line … and solution
by two terms of the new series „dashed line …
n

c

s

the
ood
lu-
ot
those

o-
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new
dashed lines depict the accurate solution and its approximatio
two terms of~31!, respectively. Beginning withN54, the curves
corresponding to different approximations withN terms of series
~31! coincide. Figure 3 demonstrates the convergence of the
ventional series and shows the accurate solution~solid line! and
the approximations obtained by using 10~dash-dotted line! and 20
~dashed line! terms. The difference in the convergence of tw
series is easily seen and self-explanatory.

The results presented show the superiority of the new repre
tation ~31! over the conventional one: two–four terms of the ne
echanics
by

on-

o

en-
w

expansion were sufficient to get nearly exact solution. On
other hand, the conventional series is not able to provide a g
approximation for the shear force: even with 20 terms, the so
tion obtained is still far from the accurate one. Although n
shown, results using the new series also converge faster than
by the conventional series in the calculation of the bending m
ment. For instance, the bending moment distribution in the ne
borhood of the location of the moving force is poorly represen
by the conventional series but is accurately calculated by the
series.
Fig. 3 Shear force distribution at tÄ0.9 s: exact solution „solid line … and solution
by the conventional series with 10 terms „dash-dot line … and 20 terms „dashed line …
MARCH 2001, Vol. 68 Õ 257
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7 Conclusions
An improved series expansion of the solution to the problem

vibration of a proportionally damped beam subject to an arbitr
number of moving loads has been derived. The forces acting
the beam may depend on time and spatial coordinate and
allowed to move with different and arbitrarily varying velocitie
The improved representation is valid even if the moving forces
not a priori known, which made it possible to apply it to th
problem of multiple moving oscillators. The convergence rate
the new expansion is considerably better than that of the con
tional series expansion.

The advantages of the new technique are most pronoun
when the term-wise differentiation of the response solution is
quired to calculate the shear force distribution, which is a disc
tinuous function. The jumps in the shear force at the points wh
the forces are applied are explicitly and accurately taken into
count by the quasi-static solution.

Numerical results have been presented that clearly demons
the improved convergence of the new representation. Base
these and other results, not included in the paper, we can
that, even with 25 terms, the approximation by the conventio
series is worse than the three-term approximation by the
method. Note that the number of first-order ordinary differen
equations required to solve the multiple moving oscillator pro
lem is equal to 2(N1 l ), wherel is the number of the oscillators
Thus, the difference in the computational complexity of t
methods based on the improved and conventional serie
considerable.
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Appendix

Proof of Representation„24…. Using the well-known proper-
ties of the functionsh(t), d(t), andd8(t), we get

w̃~x,t !52E
2`

t

dtE
0

L

g~x,h,t2t!r~Htt~h,t!h~t!

12Ht~h,t!d~t!1H~h,t!d8~t!!dh

2E
2`

t

dtE
0

L

g~x,h,t2t!D~Ht~h,t!h~t!

1H~h,t!d~t!!dh

52E
0

t

dtE
0

L

g~x,h,t2t!rHtt~h,t!dh

22E
0

L

g~x,h,t !rHt~h,0!dh

1E
0

L ]

]t
~g~x,h,t2t!rH~h,t!!ut50dh

2E
0

t

dtE
0

L

g~x,h,t2t!DHt~h,t!dh

2E
0

L

g~x,h,t !DH~h,0!dh. (32)
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Rewrite the third integral in the right-hand side of~32! as

E
0

L ]

]t
~g~x,h,t2t!rH~h,t!!ut50dh

5E
0

L

gt~x,h,t !rH~h,0!dh1E
0

L

g~x,h,t !rHt~h,0!dh.

(33)

Since the left end of the continuum is assumed to be fix
G(h,0)5G(0,h)50, and, hence,H(h,0)50. Thus, the first inte-
gral on the right-hand side of~33! vanishes, and~32! reduces to

w̃~x,t !52E
0

t

dtE
0

L

g~x,h,t2t!rHtt~h,t!dh

2E
0

t

dtE
0

L

g~x,h,t2t!DHt~h,t!dh

2E
0

L

g~x,h,t !rHt~h,0!dh2E
0

L

g~x,h,t !DH~h,0!dh.

(34)

Changing the order of the integration in the first two integrals a
taking the internal integrals by parts, we obtain

E
0

t

g~x,h,t2t!rHtt~h,t!dt

5g~x,h,0!rHt~h,t !2g~x,h,t !rHt~h,0!

1gt~x,h,0!rH~h,t !2gt~x,h,t !rH~h,0!

1E
0

t

gtt~x,h,t2t!rH~h,t!dt, (35)

and

E
0

t

g~x,h,t2t!DHt~h,t!dt

5g~x,h,0!DH~h,t !2g~x,h,t !DH~h,0!

1E
0

t

gt~x,h,t2t!DH~h,t!dt. (36)

The fourth addend on the right-hand side of Eq.~35! vanishes
sinceH(h,0)50. The first addends on the right-hand sides of~35!
and~36! are equal to zero sinceg(x,h,0) is zero. Substituting the
resulting equations into~34!, we get~24!.
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Thin-Walled Multicell Beam
Analysis for Coupled Torsion,
Distortion, and Warping
Deformations
Due to the complicated deformations occurring in thin-walled multicell beams, no s
factory one-dimensional beam theory useful for general quadrilateral multicells app
available. In this paper, we present a new systematic approach to analyze the co
deformations of torsion, distortion, and the related warping. To develop a o
dimensional thin-walled multicell beam theory, the method to determine the sectio
formation functions associated with distortion and distortional warping is newly de
oped. In order to guarantee the singlevaluedness of the distortional warping functio
multicells, distortional shear flows have been utilized. The superior result by the pre
one-dimensional theory is demonstrated with various examples.
@DOI: 10.1115/1.1357166#
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1 Introduction
Thin-walled closed beams are very useful structural member

civil, automobile, and aerospace industries due to their high rig
ity and lightweightness. Though the analysis of open sec
beams is quite well known~@1,2#!, the analysis of closed sectio
beams is still of a major research topic because of their com
cated deformations such as distortion. The analysis related to
tortion and distortional warping is, perhaps, the key issue in
analysis of thin-walled closed beams.

The fundamental treatment on this subject goes back to Vla
@2#, Křı́stek@3#, and Wright@4#. Boswell and Zhang@5# discussed
sectional deformation functions for distortion and distortion
warping for monosymmetric cross sections. Balch and Steele@6#
analyzed the local effects associated with warping and distor
near the T-joint of thin-walled closed beams. Hsu et al.@7# used
an equivalent beam-on-elastic-foundation method to accoun
the distortion deformation effect of the cross section with rigid
flexible diaphragms. Recently, the present authors~@8#! develop a
new approach to determine section deformation functions for
tortion and distortional warping of quadrilateral cross sections
beam-frame model approach for general cross sections is also
mulated~@9#! to find distortional functions for generally shape
cross sections. The importance of the consideration of the s
flow is discussed for the singlevaluedness of the distortional w
ing function~@9,10#!. Jönsson@10# used local axial equilibrium to
derive differential equations for the determination of the dist
tional warping and shear distributions. Razaqpur and Li@11,12#
performed a rigorous study on multicell box beams, but th
methods appear difficult to extend for the analysis of arbitra
shaped multicell beams.

The aim of this work is to carry out the one-dimensional ana
sis of coupled deformations of torsion, distortion, and warping
general multicell box beams. To this end, we propose a system
method to determine the section function for distortional deform

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Fe
ruary 8, 2000; final revision, October 4, 2000. Associate Editor: R. C. Ben
Discussion on the paper should be addressed to the Editor, Professor Lew
Wheeler, Department of Mechanical Engineering, University of Houston, Hous
TX 77204-4792, and will be accepted until four months after final publication of
paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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tion of multicell beams by extending the method used for sing
cell beams~@8#!. Then a procedure to determine the section def
mation function for distortional warping is presented. In derivi
the distortional warping function, the importance of a distortion
shear flow is addressed. The numerical analysis is carried ou
developingC0-finite elements based on the present approache

2 Field Approximation in Single-Cell Box Beams
We review underlying displacement approximations for t

analysis of thin-walled simply connected closed beams, wh
have been proposed by Kim and Kim@8,9#. The displacement
field for multiply connected or multicell sections, which will b
the major subject of the present work, is presented in the n
section.

The shell displacements of a point on the cross section con
are expressed in terms of the normalun(s,z), tangentialus(s,z)
and axialuz(s,z) components as in Fig. 1. In Fig. 1, the distan
ONi from the shear centerO to the pointNi of the i th edge is
denoted byr i . The normal passing through the shear center
fines the pointNi . The length of each wall is denoted bybi , and
the distance from thei th corner to the pointNi by l i .

The shell displacement can be expressed as the sum of b
deformations and corresponding sectional deformation sh
functions. The beam deformations in consideration include ro
tion u(z), torsional warpingUu(z), distortion x(z), and distor-
tional warpingUx(z). Figure 2 shows the beam deformations o
rectangular cross section.

Once the corresponding section deformation shapesc(s) are
determined, one can express the shell displacement as~@8,9#!

us~s,z!5cs
u~s!u~z!1cs

x~s!x~z! (1a)

un~s,z!5cn
u~s!u~z!1cn

x~s!x~z! (1b)

uz~s,z!5cz
Uu

~s!Uu~z!1cz
Ux

~s!Ux~z!. (1c)

In Eqs. ~1!, only nonvanishing section deformationsc(s) are
considered. The section shapes associated with the rotationu(z)
are

cs
u~s!5r i , cn

u~s!52 l i1s. (2)

For simply connected or single-cell sections, the sectional

formation shapecz (s)
Uu

associated with the torsional warping
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on.
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on,
he
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Fig. 1 Displacements at an arbitrary point of a thin-walled beam
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Fig. 2 Section deformations of a rectangular box beam for „a…
warping, „b… rotation and „c… distortion. Dotted lines denote the
deformed shapes. In this case, no distinction between torsional
and distortional warping deformations is needed as they are
identical.
lied Mechanics
cz
Uu

~s!52E
0

s

~r i2r n!ds1cz0
Uu

for the i th wall. (3)

The constantcz0
Uu

in Eq. ~3! is selected to satisfy the singlevalue
ness condition

R cz
Uu

~s!ds50

and r n is defined as

r n5
2Ā

R
c
ds

where the area enclosed by and the total length of the contoC
are denoted byĀ andrCds, respectively. The sectional deforma

tion shapescs
x(s) and cz

Ux
(s) by Kim and Kim @8,9# are some-

what complicated even for simply connected sections, and t
they are not repeated here. However, the next section will disc
these shapes for multiply connected sections in detail.

On the assumption that the thickness of the beam is m
smaller than other sectional dimensions, the three-dimensi
displacementsũn , ũs , ũz may be written as

ũn~n,s,z!'un~s,z!5cn
u~s!u~z!1cn

x~s!x~z!

ũs~n,s,z!'us~s,z!1n
]un~s,z!

]s

'cs
u~s!x~z!1cs

x~s!x~z!1n
dcn

x~s!

ds
x~z!

ũz~n,s,z!'uz~s,z!5cz
Uu

~s!Uu~z!1cz
Ux

~s!Ux~z!. (4)

The normal coordinaten in Eq. ~4! is measured from the middle
line of each wall. Nonegligible three-dimensional strain comp
nents obtained from the displacement field in Eq.~4! can be found
as
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ezz5
]ũz

]z
'cz

Uu
~s!

dUu~z!

dz
1cz

Ux
~s!

dUx~z!

dz
(5a)

ezs5
1

2 S ]ũz

]s
1

]ũs

]z D'
1

2
Fdcz

Uu
~s!

ds
Uu~z!1

dcz
Ux

~s!

ds
Ux~z!

1cs
u~s!

du~z!

dz
1cs

x~s!
dx~z!

dz
G (5b)

ess5
]ũs

]s
'n

d2cn
x

ds2 x~z!. (5c)

The nonvanishing stress components are simply

szz5
E

12n2 ~ezz1ness!, (6a)

sss5
E

12n2 ~ess1nezz!, (6b)

ssz52Gesz (6c)

Integrating over the beam cross section the following expr
sion for the system potential energyP:

P5
1

2 E s i j e i j dV2E ~pũz1qq̃s!dV, (7)

one can find the potential energy in one-dimensional form~see
@8,9,13# for the explicit expression for simply connected section!.

P@u,x,Uu,Ux#5
1

2 E F~z,u,x,Uu,Ux, ¯ !dz

3 Section Displacements in Multicell Box Beams
The previous section summarized how three-dimensional

placements can be obtained from the section deformation sh
c(s) in single-cell box beams. In this section, we present
section deformation shapes for multicell box beams. In particu
we focus on the analytic derivation of distortion and distortion
warping deformation shapes for multicells, which is the main c
tribution of this work.

3.1 Distortion Functions cs
x
„s…, cn

x
„s…. Extending the

theory to determine the distortion functions for simply connec
closed beams~@8#!, we present the technique to determine t
distortion functions for multicell box beams. The present stu
will be given for single-layer multicells composed of gene
quadrilateral cells.

In determining the distortion functions, a two-stage proced
is employed. In the first stage, the corner rigidity resisting
distortional deformation is not taken into account; thus the cr
section of a box beam is assumed to deform as hinged links w
corners are regarded simply as hinges. In this setting, the di
tion can be described by the amount of rigid-body tangential (c̄si

x )
and normal (c̄ni

x ) translations and a rigid-body rotation (c̄u i
x ) of

the i th wall. The normalcni
x (si) and tangentialcsi

x (si) displace-
ments of thei th wall can be written in the following form:

csi
x ~si !5c̄si

x

cni
x ~si !5c̄ni

x 2~si2bi /2!c̄u i
x (8)

0<si<bi , i 51,¯m

wherebi denotes the length of thei th wall andm is the number of
walls of the multicell section. It is worth noting that the numberm
of walls for a cross section havingM cells is 3M11. Therefore
there are 9M13 unknowns since each wall has three unknow
262 Õ Vol. 68, MARCH 2001
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x ,c̄u i
x ). Though the present work is limited to common

used single-layer multicells, the approach developed in this w
can be extended to multilayer multicells.

To determine the distortion functions, the following conditio
must be satisfied:

~i! Corner displacement conditions~in-plane components!:
At corners where two walls join~see Fig. 3~a!!

csi
x usi5bi

5cs j
x usj 50 cos~a j2a i !2cn j

x usj 50 sin~a j2a i ! (9a)

and

cni
x usi5bi

5cs j
x usj 50 sin~a j2a i !1cn j

x usj 50 cos~a j2a i !. (9b)

At corners where three walls join~see Fig. 3~b!!

csi
x usi5bi

5cs j
x usj 50 cos~a j2a i !2cn j

x usj 50 sin~a j2a i !,
(10a)

cni
x usi5bi

5cs j
x usj 50 sin~a j2a i !1cn j

x usj 50 cos~a j2a i !

(10b)

and

csi
x usi5bi

5csk
x usk50 cos~ak2a i !2cnk

x usk50 sin~ak2a i !,
(10c)

cni
x usi5bi

5csk
x usk50 sin~ak2a i !1cnk

x usk50 cos~ak2a i !.
(10d)

In Eqs.~9!, ~10!, a i is the angle between the horizontalx-axis
and the tangential direction of thei th wall. Note that Eqs.~9!, ~10!
provide 8M conditions for anM-cell section.

(ii) Zero virtual work conditions: The stress field by the dis
tortion deformation should not produce any virtual work und
virtual rigid-body rotation~see Eq.~11a!! and displacements~see
Eqs.~11b,c!!.

E r •cs
x~s!dA5(

i 51

m

r •c̄si
x bit50 (11a)

Fig. 3 „a… A corner at which two walls meet and „b… a corner at
which three walls meet
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x~s!dA5(

i 51

m

cosa i•c̄si
x bit50 (11b)

E sina•cs
x~s!dA5(

i 51

m

sina i•c̄si
x bit50 (11c)

Note thatr in Eq. ~11a! represents the rigid-body rotation fiel
and cosa and sina are used to express the resultant forces byssz

x

in the direction of thex andy-axes. The conditions stated as Eq
~11! may be viewed as the orthogonality conditions of the dist
tional deformation with respect to three in-plane rigid-body m
tions. Since Eqs.~9! through ~11! give 8M13 conditions for
9M13 unknowns,M different distortion functions are possible

CASES STUDY: Two-Cell Box Beam. To understand the n
ture of the distortion functions, we consider a specific example
a two-cell box beam shown in Fig. 4. SinceM52, there will be
two independent distortion functionsc1 and c2. Using Eq.~8!
and conditions~9!–~11!, one can find

5
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Fig. 4 A typical two-cell box beam
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and

5
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whereK1 andK2 are arbitrary constants and will be set equal to
without loss of generality. The deformation shapes correspond
to c1 andc2 are plotted in Figs. 5~a! and ~b!, respectively. It is
apparent that the deformation shapes shown in Figs. 5~a! and ~b!
alone violate the slope continuity at corners. Since the use of th
distortional deformation shapes results in serious distortional s
ness reduction, some modifications must be made; both slope
moment continuities will be imposed at the corners.

To this end, we replace the normal displacementcn
x(s) in Eq.

~8! by cubic polynomial functions as

cni
x ~s!5S b i ~0!1b i ~bi !

12c̄u i
x

bi
2 D si

32S 2b i ~0!1b i ~bi !
13c̄u i

x

bi
D si

2

1b i ~0!si1c̄u i
x

bi

2
1c̄ni

x (14)

where new variablesb i (0) andb i (bi )
represent the amounts of th

slope of thei th wall at both ends, which are defined as

b i ~0!5
dcn j

x

ds
U

si50

b i ~bi !
5

dcni
x

ds
U

si5bi

. (15)
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Note thatcni
x (si) in Eq. ~14! are selected to yield exactly the sam

corner displacements as those by Eq.~8!:

cni
x ~0!5c̄ni

x 1
bi

2
c̄u i

x ; cni
x ~bi !5c̄n j

x 2
bi

2
c̄u i

x .

Furthermore,c̄ni
x and c̄u i

x in Eq. ~14! are the constants that hav
been determined by Eqs.~8!–~11!. Therefore,cni

x (si) of Eq. ~14!
automatically satisfy the conditions~9! through~11! for any val-
ues ofb i (0) andb i (bi )

.
To determine the remaining unknownsb i (0) and b i (bi )

in Eq.
~14!, the slope continuity and moment equilibrium conditions a
imposed at each corner.

For corners where two walls meet~see Fig. 3~a!!

b i ~bi !
5b j ~0! (16a)

Mi
busi5bi

5M j
busj 50 (16a)

and for corners where three walls meet~see Fig. 3~b!!

b i ~bi !
5b j ~0! (17a)

b i ~bi !
5bk~0! (17b)

Mi
busi5bi

5M j
busj 501Mk

busk50 (17c)

whereMi
b is the~in-plane! transverse bending moment defined

Mi
b~si !5

Eti
3

12

d2cni
x ~si !

dsi
2 .

Since there are 4M slope continuities and 2M12 moment equi-
librium conditions for 2m56M12 unknowns (b i (0) ,b i (bi )

), all
of the unknowns are uniquely determined.

CASE STUDY: Two-Cell Box Beam. For the case of th
two-cell box beam shown Fig. 4, the modification ofcni

x using Eq.
~14! yields the results shown in Fig. 6. From Fig. 5 and Fig. 6

Fig. 5 Two independent preliminary distortion modes. These
modes do not satisfy the rotation continuity and moment equi-
librium at corners.
264 Õ Vol. 68, MARCH 2001
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is clear that the consideration of the corner condition is very
portant to obtain the correct in-plane distortional stiffness of b
beams.

3.2 Distortional Warping Function cz
Ux
„s…. There are

some reports~@10,11#! discussing how to find distortional warpin
functions in some cross sections.

Nonuniform torsion~see@1#! produces an additional shear flo
contributing to the twisting moment. This additional shear flo
may be called a distortional shear flow, and the negligence of
shear flow would yield incorrect distortional warping deform
tions. We introduce a constant distortional shear flow in each
in order to guarantee the singlevaluedness of the distortio
warping function.

If we denote the distortional shear flow byqx in a single-cell

box beam, the distortional warping functioncz
Ux

may be found
from

qx~z!

Gt
5

]uz
Ux

]s
1

]us
x

]z
. (18)

In Eq. ~18!, us
x is the tangential displacement by the distortion

deformation, which has already been given asus
x(s,z)

[cs
x(s)x(z) ~see Eq.~1a!!. Likewise, the axial displacemen

uz
Ux

(s,z) may be written as

ux
Ux

~s,z!5cz
Ux

~s!Ux~z!. (19)

To determinecz
Ux

(s), the shear stress flowqx(z) must be
found first from the single-valuedness of the axial displacem

uz
Ux

(s,z):

05 R
C
duz

Ux
~s,z!5 R ]uz

Ux

]s
ds

5
qx~z!

G R
C

ds

t
2

dx~z!

dz R
C
cs

x~s!ds.

(20)

Rearranging Eq.~20! for qx(z) yields

Fig. 6 Two independent distortion modes satisfying the rota-
tion continuity and moment equilibrium at corners
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qx5G

R
C
cs

xds

R
C

ds

t

dx

dz
5GGx

dx

dz
(21)

where

Gx5
Vx

R
C

ds

t

(22)

and

Vx5 R
C
cs

xds. (23)

Using qx(z) expressed as Eq.~21!, one can rewrite Eq.~18! as

]uz
x~s,z!

]s
5

dcz
Ux

~s!

ds
Ux~z![S Gx

t
2cs

x~s! D dx~z!

dz
. (24)

With Ux(z)5dx(z)/dz, one obtains

dcz
Ux

~s!

ds
5

Gx

t
2cs

x~s! (25)

and integrating Eq.~25! yields

cz
Ux

~s!5E
s0

sFGx

t
2cs

x~s!Gds1cz0
Ux

. (26)

The integration constantcz0
Ux

can be determined from the con
dition that the virtual work by the distortion warping stress due
the virtual extensional axial displacement must vanish:

R
C
cz

Ux
~s!ds50. (27)

A similar procedure can be applied toM-cell box beams. In this
case,M shear flows defined in each ofM cells must be considered
In a typical multicell cross section shown in Fig. 7, the shear flo
Journal of Applied Mechanics
-
to

.
ws

in three adjacent cells~the J21th, Jth andJ11th cells! are de-
noted byqJ21

x , qJ
x , andqJ11

x .
Applying the singlevaluedness condition expressed as Eq.~20!

around theJth cell yields

05G R
CJ

duz52qJ21
x E

CJ21J

ds

t
1qJ

x R
CJ

ds

t
2qJ11

x

3E
CJJ11

ds

t
2G

dx~z!

dz R
CJ

cs
xds

52qJ21
x E

CJ21J

ds

t
1qJ

x R
CJ

ds

t

2qJ11
x E

CJJ11

ds

t
2GVJ

dx~z!

dz
. (28)

In Eq. ~28!, the subscriptJ denotes the quantities associated w
the Jth contour, and*CJ21J

represents the integral along the wa
common to theJ21th and Jth cells. Writing Eq. ~28! for J
51,2,¯ ,M and putting the resulting equations in matrix form
one may obtain

C•qx5G
dx

dz
Vx (29)

where

Fig. 7 Shear flows of three adjacent cells JÀ1, J , J¿1 of a
multicell cross section associated with distortion and distor-
tional warping
C53
R

C1

ds

t
2E

C12

ds

t
0 0 ¯ 0

2E
C21

ds

t R
C2

ds

t
2E

C23

ds

t
0 ¯ 0

� � �

0 2E
CJ21J

ds

t R
CJ

ds

t
2E

CJJ11

ds

t
¯ 0

� � �

0 ¯ 0 0 E
CM21M

ds

t R
CM

ds

t

4 , (30)
p-
qx5$q1
x ,q2

x , ¯ ,qM
x %T, (31)

Vx5$V1
x ,V2

x , ¯ ,VM
x %T. (32)

Inverting Eq.~29! for qx yields

qx5GC21Vx
dx

dz
5GGx

dx

dz
(33)
where

Gx5~C!21Vx. (34)

SinceGx can be determined for all cells, the distortional war

ing function cz
Ux

(s) can be found by extending Eq.~26! to the
case of a multicell section. Referring to Fig. 3~b!, one can find
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cz
Ux

~si !5E
s0

siFG I
x

t
2cs

x~si !Gds1czi0
Ux

(35a)

and

cz
Ux

~sk!5E
s0

skFG I
x2GJ

x

t
2cs

x~sk!Gds1czk0
Ux

. (35b)

In order to determine the integration constantsczi0
Ux

, czk0
Ux

, Eq.

~27! and the continuity conditions ofcz
Ux

at corners must be used
CASE STUDY: Two-cell Box Beam. We reconsider the tw

cell box beam shown in Fig. 4 in order to give the distortion
warping function explicitly. In this case, there exist two disto

tional warping functionscz
Ux1, cz

Ux2 corresponding to the two dis
tortion functionscz

x1, cz
x2. Using c̄si

x1 ~with K151) in Eq. ~12!,

VJ
x1 are determined as

V1
x15 R

C1

cs
x1ds5c̄s1

x1b11c̄s7
x1b71c̄s5

x1b51c̄s6
x1b6

501
20

3
•10101

10

3
•105100 (36a)

V2
x15 R

C2

cs
x2ds5c̄s2

x1b21c̄s3
x1b31c̄s4

x1b42c̄s7
x1b7

502
10

3
•10102

20

3
•1052100. (36b)

The matrixC in Eq. ~29! is simply

C5F 40

t
2

10

t

2
10

t

40

t

G . (37)

Substituting Eqs.~36! and ~37! in Eq. ~34! yields

G1
x152t, G2

x1522t. (38)

OnceGJ
x are determined, the distortional warping functioncz

x

can be obtained from Eqs.~35!. The explicit expressions for eac
wall are given below.

cz1
Ux1

~s1!5E
0

s1S G1
x1

t
2cs

x1~s1!D ds11cz0
Ux1

52s11cz0
Ux1 0<s1<b15b510

cz2
Ux1

~s2!5E
0

s2S G2
x1

t
2cs2

x1D ds21cz1
Ux1

~b1!

522s212b1cz0
Ux1 0<s2<b25b

cz3
Ux1

~s3!5E
0

s3S G2
x1

t
2cs3

x1D ds31cz2
Ux1

~b2!

5
4

3
s31cz0

Ux1 0<s3<b35b

cz4
Ux1

~s4!5E
0

s4S G2
x1

t
2cs4

x1D ds41cz3
Ux1

~b3!

522s41
4

3
b1cz0

Ux1 0<s4<b45b
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cz5
Ux1

~s5!5E
0

s5S G1
x1

t
2cs5

x1D ds51cz4
Ux1

~b4!

52s52
2

3
b1cz0

Ux1 0<s5<b55b

cz6
Ux1

~s6!5E
0

s6S G1
x1

t
2cs6

x1D ds61cz5
Ux1

~b5!

52
4

3
s61

4

3
b1cz0

Ux1 0<s6<b65b

cz7
Ux1

~s7!5E
0

s7S G1
x12G2

x1

t
2cs7

x1D ds71cz1
Ux1

~b1!

52
8

3
s712b1cz0

Ux1 0<s7<b75b

The integration constantcz0
Ux1 from the condition stated by Eq

~27! is

cz0
Ux1

52
20

3
.

Repeating the same procedure for the second distortional w
ing function, one can find

cz1
Ux2

~s1!5
20

3
s12

200

3
0<s1<b15b510

cz2
Ux2

~s2!5
20

3
s2 0<s2<b25b

cz3
Ux2

~s3!52
40

3
s31

200

3
0<s3<b35b

cz4
Ux2

~s4!5
20

3
s42

200

3
0<s4<b45b

cz5
Ux2

~s5!5
20

3
s5 0<s5<b55b

cz6
Ux2

~s6!52
40

3
s61

200

3
0<s6<b65b

cz7
Ux2

~s7!50 0<s7<b75b

Figures 8~a! and ~b! show the first and second distortion
warping functions, respectively.

3.3 Torsional Warping Function. Although the torsional
warping is well known~see@14#!, we repeat the result here for th
sake of completeness. As in the case of the distortional warp
functions, one can form the following matrix equation for th
torsional shear flowqu,

C•qu5G
du

dz
V (39)

whereC is the same matrix as defined as Eq.~30!, and

Vu5H R
C1

rds, ¯ , R
CM

rdsJ T

.

Replacing (qx,Vx) by (qu,Vu), the analysis carried out for the
distortional warping functions applies directly in determining t

torsional warping functionscz
Uu

(s).
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4 Numerical Examples

For numerical calculations, aC0-continuous piecewise-linea
one-dimensional finite beam element is implemented using
theory presented in the previous sections. In the case of two
beams, the nodal displacement vectord has five degrees-of
freedom:

dT5$u Uu x1 Ux1 x2 Ux2%.

The rotation and the torsional warping degrees are denotedu
and Uu, and the two distortion and distortional warping degre
are denoted by (x1 ,x2) and (Ux1,Ux2), respectively. Since the
procedure for the finite element implementation can be found
Kim and Kim @8,9# the detailed procedure is skipped here.

Example 1 Two-Cell Box Beam Subjected to Various Lo
Conditions. We consider a straight two-cell box beam subjec
to a couple~Fig. 9~a!! and a set of three point loads~Fig. 9~b!!.
Throughout the numerical examples, the magnitude of the p
loadF will be taken simply as 131023 N, and Young’s modulus
and Poisson’s ratio are taken as 2.031011 N/m2 and 0.3, respec-
tively. The vertical displacementsuy along A due to the loads
shown in Figs. 9~a! and ~b! are plotted in Figs. 10~a! and ~b!,
respectively. The results with varying numbers (Ne) of the present
beam elements are compared with those by plate elements. F
11 compares the present one-dimensional results and the
finite element results for the distribution of the transverse bend
stresssss at z5175 mm andn5t/2 for the load case of Fig. 9~a!.
For the plate element analysis, IDEAS~@15#! was employed and
the convergence of the plate element result was confirmed. As
number of the present beam element increases, the present
dimensional solution converges well to the plate element resu

Example 2 More General Cross Sections.In this example,
we consider more general cross sections of two-cell box bea
Figure 12 shows the dimensions of a monosymmetric trapezo
section and the vertical displacementuy at pointA. Other geomet-
ric and boundary conditions except the section shape are the

Fig. 8 Two distortional warping functions corresponding to
the distortion functions shown in Fig. 6. Numbers denote the
relative magnitudes of axial warping displacements.
Journal of Applied Mechanics
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Fig. 9 A two-cell box beam subjected to „a… a couple and „b… a
set of three concentrated loads

Fig. 10 The vertical displacements u y along corner A . The re-
sults „a… and „b… correspond to the loading cases shown in
Figs. 9 „a… and „b…, respectively. The number of the present
beam finite elements is denoted by Ne .
MARCH 2001, Vol. 68 Õ 267
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Fig. 11 The distribution of the transverse bending stress sss at zÄ175 mm and nÄt Õ2. The present results
„solid lines … are compared with the finite element results „dotted lines … by IDEAS.
e
d
s

as those in Example 1. An excellent agreement between
present one-dimensional result and the plate element result is
served. We also treat an unsymmetrically shaped two-cell b
subjected to a couple as shown in Fig. 13. The horizontal
placementux at point A is also plotted in Fig. 13. This cros
section is seldom used in practice, but it serves to confirm
validity of the present approach.

Fig. 12 The vertical displacement u y along corner A of a trap-
ezoidal two-cell box beam under a couple „beam length
Ä200 mm …

Fig. 13 The horizontal displacement u x along corner A in an
unsymmetric two-cell beam under a couple „beam length
Ä200 mm …
ol. 68, MARCH 2001
the
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theFig. 14 „a… The fourth and „b… the seventh distortional eigen-
modes of a two-cell box beam with a freely supported condition

Table 1 The eigenfrequencies of a freely supported two-cell
box beam whose cross section is shown in Fig. 9. „Ne denotes
the number of elements. …

Mode
Plate

(Ne53500)
Classical
Theory

Present
(Ne520)

Present
(Ne540)

1st torsion 5674.8 Hz 5987.6 Hz 5693.9 Hz 5689.6 Hz
1st distortion 8775.1 Hz N/A 8807.5 Hz 8786 Hz
2nd distortion 9986.4 Hz N/A 10111 Hz 9999.5 Hz
3rd distortion 10790.6 Hz N/A 10817 Hz 10817 Hz
4th distortion 11385.6 Hz N/A 11398 Hz 11394 Hz
5th distortion 11769.4 Hz N/A 12330 Hz 11958 Hz
6th distortion 12893.7 Hz N/A 12418 Hz 12418 Hz
7th distortion 13697.9 Hz N/A 13164 Hz 13164 Hz
Transactions of the ASME
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It is remarked that the present one-dimensional theory ac
rately predicts the local end effect near the loaded end. The
placements shown in Figs. 10, 12, and 13 vary rapidly at the e
If one does not consider the distortional deformation, the lin
displacement distributions would appear in these figures.
Balch and Steele@6# for more rigorous analysis of end effects
thin-walled closed beams.

Example 3 Free Vibration Analysis of a Two-Cell Box Bea
We perform the vibration analysis of a two-cell box beam with
both ends free. The dimensions and material properties of
beam are the same as those used in Example 1. The lowes
sional and distortional eigenfrequencies of the beam are liste
Table 1. The present results show an excellent agreement
those of the plate finite elements while the classical torsion the
by St. Venant cannot predict the distortional eigenfrequenc
Figure 14 shows the fourth and seventh distortional eigenmo
of the two-cell box beam.

5 Conclusions
Section deformation functions associated with distortion a

distortional warping for general multicell beams were presen
The distortional shear flow was utilized to derive the distortio
warping function. Excellent agreement was found between
present one-dimensional beam results and the plate finite ele
results for both static and dynamic analyses. In particular, lo
end-effects were accurately predicted even with the present
dimensional analysis.
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Hysteresis Behavior and
Modeling of Piezoceramic
Actuators
A new theory is developed to model the hysteresis relation between polarization
electric field of piezoceramics. An explicit formulation governing the hysteresis is
tained by using saturation polarization, remnant polarization, and coercive electric fi
A new form of elastic Gibbs energy is proposed to address the coupling relations be
electrical field and mechanical field. The nonlinear constitutive relations are derived f
the elastic Gibbs energy and are applicable in the case of high stroke actuation.
hysteresis relations obtained using the current model are correlated with experim
results. The static deflection of a cantilever beam with surface-bonded piezoelectr
tuators is analyzed by implementing the current constitutive relations. Numerical re
reveal that hysteresis is an important issue in the application of piezoceramics.
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Introduction
Piezoelectricity refers to the relationship between pressure

electricity that exists within a unique family of materials, calle
piezoelectric materials. Piezoelectric materials, especially PZT
ramics, have received considerable attention in the past decad
their wide applications to augment stability and control vibrati
~@1#!. Traditional studies of their applications in smart structu
are based on linear piezoelectric model~@2,3#! which implies both
low electric fields and low mechanical strains. However, grea
actuation authority can be achieved by applying an electric fi
exceeding the limit of a linear piezoelectric constitutive relation
increase induced strains. Piezoceramics exhibit constitutive n
linearity of hysteresis due to the variation of polarization if t
applied electric field is above the coercive limit. On the oth
hand, hysteresis behavior is also related to mechanical load
Different hysteresis loops are observed with varying mechan
stresses.

For the analysis of a smart structural system, it is necessar
develop efficient theories that are capable of addressing mat
nonlinearities and accurately predicting hysteresis phenomeno
actuators under high electrical excitations accompanied by
chanical stresses. It has been well known that the applicatio
high electric field and mechanical stress has the effect of chan
the polar axis of material unit cells. The process of domain po
ization reorientation creates repolarization, which introduces
hysteresis loop shown in piezoelectric material experime
~@4,5#!. This nonlinear phenomenon of piezoelectric hysteresis
been studied by innumerable researchers at two different sc
Microscopic theories, based on individual domain or a sim
collection of domains, present only some physical insights i
piezoelectricity and provide no successful model to accura
predict the response of practical actuators. Phenomenolog
models, on the other hand, are proposed to match experim
results with assumptions motivated by certain piezoelectric c
acteristics. Devonshire@6,7# formulated a model of ferroelectricity
by expanding the free energy as a function of polarization

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ma
1, 2000; final revision, Aug. 28, 2000. Associate Editor: A. K. Mal. Discussion
the paper should be addressed to the Editor, Professor Lewis T. Wheeler, Depa
of Mechanical Engineering, University of Houston, Houston, TX 77204-4792,
will be accepted until four months after final publication of the paper itself in
ASME JOURNAL OF APPLIED MECHANICS.
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strain. Further study on thermodynamic energy and invaria
requirements was performed by Chowdhury et al.@8# to investi-
gate nonlinear elastic dielectrics including polarization gradi
effects. One-dimensional domain switching was studied and a
law of the effective aligned dipoles was proposed by Chen
Montgomery@9#. Chan and Hagood@4# and Ghandi and Hagood
@10# studied polarization variation by using the method of ene
and energy barrier. The marcolevel approach combined with
versible and irreversible domain wall motions in response to
applied electric field was used by Smith et al.@11# to investigate
the hysteresis between polarization and an electric field. Th
models are more useful in engineering applications but are
completely satisfactory due to weak physical assumptions or
introduction of material-related parameters without clear phys
meanings.

A physically based phenomenological approach to address
hysteresis behavior of piezoceramic actuators is developed in
paper. The piezoelectric actuator is assumed as a continuum
an oriented and switchable dipole microstructure. The inter
constraint of only two types of polarization switching, 180 d
and 90 deg switching, in the case of a tetragonal piezocera
phase under the application of mechanical loading and a h
electric field, is considered. The differential equation govern
the relation between polarization and an electric field is est
lished by considering the critical energy for 180 deg and 90 d
switching and energy loss due to inclusions in the materials
new form of elastic Gibbs free energy for piezoceramics is p
posed to address the coupling effects between polarization
electric field, and mechanical strains. A nonlinear constitut
model, indicating gradual development and critical yield of pol
ization due to polar axis switching of crystal domains, is obtain
to simulate electromechanical motion.

Model Development

For a piezoelectric elastic body, the elastic Gibbs free energ
isothermal conditions can be written in terms of two independ
state variables, polarizationPi and stresss i j , that is,G(s i j ,Pi).
Consider the functionalp as follows:
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p~ui ,s i j ,f,Ei ,Di ,Pi !

5E
t0

t

dt•H E
V
F1

2
ru̇i u̇i1 f iui2ref2G~s i j ,Pi !2Dif i

2s i j

1

2
~ui , j1uj ,i !2S Di2

1

2
g i j Ej2Pi DEi Gdv

1E
Gu

s i j nj~ui2ūi !ds1E
Gs

t̄ iuids

1E
Gf

Dini~f2f̄ !ds1E
GD

d̄fdsJ (1)

wherer, f i , re , andg i j denote mass density, force per unit vo
ume, electric charge density, and dielectric permittivity, resp
tively. The quantitiesui and« i j denote mechanical displaceme
and strain, respectively, andf, Ei , and Di denote the electric
potential, electric field, and electric displacement, respectiv
The quantitiesūi , t̄ i , f̄, andd̄ denote the prescribed deformatio
on the displacement boundary (Gu), the traction on the stres
boundary (Gs), the voltage on the potential boundary (Gf) and
the surface charge on the charge boundary (GD), respectively, and
ni denotes the unit outward normal of the surface~G!. The varia-
tion of the functionalp with independent variation indui , ds i j ,
df, dEi , dDi , anddPi can be written as follows:

s i j , j1 f i2rüi50, (2)

Di ,i2re50 (3)

]G~s i j ,Pi !

]s i j
1

1

2
~ui , j1uj ,i !50, (4)

]G~s i j ,Pi !

]Pi
2Ei50 (5)

Ei1f ,i50, (6)

Di2g i j Ej2Pi50 (7)

ui2ūi50 on Su , (8)

t̄ i2s i j nj50 on Ss (9)

w2w̄50 on Sf , (10)

d̄2Dini50 on SD . (11)

Equations~2!–~11! govern the equilibrium of mechanical an
electrical motions, the constitutive relations of the electrom
chanical field, the electrical characteristics of dielectrics, the m
chanical boundary conditions, and the electrical boundary co
tions, respectively. The constitutive relation will now be obtain
through appropriate form of the elastic Gibbs energyG(s i j ,Pi)
which can address the evolution of polarization and, furtherm
illustrate the hysteresis behavior of piezoceramics. The hyste
characteristics between polarization and electric field with
stress effects will be investigated first. Then, the elastic Gi
energy will be used to investigate the electromechanical coup
effects.

Polarization and Electric Field Hysteresis
For a piezoelectric body, letEc , Pr , andPs denote the coer-

cive electric field, the remnant polarization, and the satura
polarization, respectively. The quantitiesE andP denote the mag-
nitudes of the electric field vector~E! and the polarization vecto
~P!, respectively. During the process of repolarization, polari
tion orientation of any crystal cell is prone to be aligned along
direction of the electric field, denotede, to the best of its ability.
This is achieved through either 180 deg switching or 90 d
Journal of Applied Mechanics
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switching with respect to the polarization orientation of the pre
ous step. The polarization components, if they are perpendic
to the direction of the summed polarization, counteract and ca
each other. As a result, the polarization will be aligned along
direction of the electric field.

The tetragonal crystallites with dipole moments and inclusio
such as voids, both governing the evolution of polarization, e
in piezoceramic materials. The total polarization can be pa
tioned into two parts, polarizationPd , which addresses the energ
required to align the dipole orientation with the direction of ele
tric field through 180 deg and 90 deg domain switching, and
larization Pin , which addresses the energy required to overco
the inclusions in piezoelectric materials. That is to say,

P5Pd1Pin . (12)

Both of these polarizations,Pd andPin , will be investigated next
and the governing evolution equations will be derived.

In a piezoceramic body of volumeV with zero initial polariza-
tion, a dipole is modeled by a volumeVp possessing a momentp
with a fixed magnitudep. Random distribution of dipoles implies
that each dipole can be mapped to a unit spherical surface with
moment direction along the directioner ~Fig. 1! which guarantees
that the summation of dipole moments vanishes. Therefore, a
tinuous distribution functionrs representing dipole moment den
sity on the surface and polarizationPd can be defined as follows

rs5
pV

4pVp
, (13)

Pd5T
S

rsep•eds (14)

whereep denotes the dipole moment direction during repolariz
tion.

A critical electrical energy is required to reorientate the m
ment direction of the dipole through 180 deg or 90 deg dom
switching. The density of this critical energy,rc , can be approxi-
mated byrsEc . For the dipole at a location described by the ang
w ~Fig. 1!, the accumulated electrical energy density that make
180 deg flip possible isrsE cosw. The accumulated electrica
energy density that makes a 90 deg flip possible isrsE sinw. If
the electrical energy density associated with a 180 deg flip rea
the critical valuerc , the 180 deg flip will take place first. The
same is assumed for the 90 deg flip.

Figure 2~a! illustrates the initial state of zero polarization. I
the absence of an external electric field, the moment direction
each dipole is alonger . Figure 2~b! illustrates dipole direction
variations due to the external electric fieldE applied along the
direction e. The dipoles at the bottom surface of the spherep

Fig. 1 Illustration of surface mapping
MARCH 2001, Vol. 68 Õ 271
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2a<w<p) change their direction fromer to 2er due to the fact
that the 180 deg switching energy density,rsE cosw, is greater
than the critical valuerc . The dipoles at the middle of the sphe
(p/22a<w<p/21a) change their direction fromer to 2ew due
to the fact that the 90 deg flip energy density,rsE sinw, is greater
than the critical valuerc , wherea is used to denote the region o
dipole switching. By using Eq.~14!, the polarizationPd can be
calculated as follows:

Pd5rsE
0

2p

duF E
0

p/22a

er•e1E
p/22a

p/21a

2ew•e1E
p/21a

p2a

er•e

1E
p2a

p

2er•eGsinwdw. (15)

The complete process of repolarization due to a cyclic loading
electric field can be determined following the above procedu
The result is illustrated in Fig. 3. It can be observed that
polarizationPd reverses in the narrow regions around the coerc
electric field. The variation of polarization can capture the ba
characteristics of the hysteresis loop. Finally, the relation betw
the mapping values (rs anda! and the piezoceramic characteri
tics (Ps andEc) can also be obtained as follows:

rs5
Ps

p~21p/2!
, (16)

Fig. 2 Illustration of dipole reorientation

Fig. 3 Illustration of polarization Pd
272 Õ Vol. 68, MARCH 2001
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a5arccosS Ec

uEu D . (17)

The energy required to overcome the inclusions in piezoc
amic materials, addressed by the polarizationPin , is assumed
proportional to the change in energy required to align the dipo
The process of repolarization can be modeled such that a dipo
reorientated from the initial position~momentp8 with an angleu
between the directions of the dipole moment and the electric fi!
to the aligned position~momentp in the direction of the electric
field!. The variation in energy density during this process, deno
Drd , can be written as follows:

Drd5p•E2P8•E5pE~12cosu!. (18)

Therefore, the energy density to overcome the inclusions, den
r in , can be written as follows:

r in5cpE~12cosu! (19)

wherec is a proportionality constant.
Considering the volume ofdV with dipole density n and

using the average of statistical mechanics~@11#!, the energy
required to overcome the inclusions and the correspond
change in polarization, denotedDRin andDP, can be written as
follows:

DRin5
1

2
^rp&~12cosu!ndV, (20)

DP5pn~12cosu! (21)

where^rp& denotes the value ofr in when u5p ~180 deg flip!,
that is,^2cpE&. Therefore, the energy in the volumedV in terms
of the polarization change can be written as follows:

DRin5
^rp&
2p

DPdv. (22)

Thus, during the process of repolarization starting from zero to
valueP, the energy required to overcome inclusions, denotedRin ,
can be written as follows:

Rin5
^rp&
2p

dvE
0

P

dP. (23)

On the other hand, the quantityRin , representing the energ
associated with the polarizationPin in the volumedv, can be
written in another form as follows:

Rin52E
0

E

PindE dv. (24)

Fig. 4 Illustration of hysteresis loop „PZT 5A…
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By equating and differentiating Eqs.~23! and~24! with respect
to the electric fieldE and substituting Eq.~12! into it, the follow-
ing incremental law governing the polarization development
obtained:

k
dP

dE
5Pd2P (25)

wherek is a material constant and is denoted^rp&/2p.
d
t
m

t

a

s

s

a
t
a
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The polarizationPd ~Fig. 3! shows that the flips take plac
in the small regions around the coercive value6Ec . Therefore,
Pd can be approximated by two straight lines6Ps with jumps at
the points of the coercive values. By using this approximati
Eq. ~25! can be solved with two explicit solutions, which repr
sent the rising line and the decreasing line of the hysteresis
~Fig. 4!, respectively. The hysteresis loop can now be written
follows:
5 P~E!5sign~E2Ec!PsF12expS U E

Ec
21U lnS 12

Pr

Ps
D G rising line

P~E!5sign~E1Ec!PsF12expS U E

Ec
11U lnS 12

Pr

Ps
D G decreasing line

(26)

or

E~P!5EcFd1sign~P!
ln~12uP/Psu!
ln~12uPr /Psu!

G (27)

whered51 represents the rising line andd521 represents the decreasing line.
Generally, piezoceramic material will not be driven to full saturation, which implies that the maximum polarization (Ps8) during the

process of repolarization is smaller than the saturation value ofPs . The magnitude ofPs8 can be obtained through Eq.~26! by
substituting the maximum applied electric field into it and the hysteresis relation can be written as follows:

5 P~E!5PsF12expS U E

Ec
21U lnS 12

Pr

Ps
D G Ec<E<Emax

P~E!52Ps8F12expS U E

Ec
21U lnS 12

Pr

Ps
D G 2Emax<E,Ec

rising line (28)

and

5 P~E!5Ps8F12expS U E

Ec
11U lnS 12

Pr

Ps
D G 2Ec<E<Emax

P~E!52PsF12expS U E

Ec
11U lnS 12

Pr

Ps
D G 2Emax<E,2Ec

decreasing line (29)
the
last
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rom
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where Emax is the maximum value of the applied electric fiel
For both rising and decreasing lines, if the directions of
polarization vector and the electric field remain the sa
(Ec<E<Emax for the rising line and2Emax<E,2Ec for the
decreasing line!, the equations or the corresponding paths in
loop will be the same as those driven to the saturation pointPs .
The repolarization stops when the electric field reaches its m
mum value6Emax and the pseudo-saturation points6Ps8 are
reached. If the polarization and the electric field have oppo
directions (2Emax<E<2Ec for the rising line and2Ec<E
,Emax for the decreasing line!, the paths will start from the
pseudo-saturation points6Ps8 instead of the saturation point
6Ps .

Elastic Gibbs Free Energy
The elastic Gibbs energy is assumed as follows:

G~s i j ,Pi !52
1
2 Si jkl s i j skl2Qi jkl s i j PkPl1F~Pi ! (30)

where the quantitySi jkl denotes the elastic compliance at const
polarization. The quantityQi jkl denotes the material constan
representing piezoelectric effects. The first term on the right-h
.
he

e

he

xi-

ite

nt
s
nd

side of Eq.~30! represents the mechanical strain energy and
second term results in the electrical-mechanical coupling. The
term,F(Pi), is used to address the hysteresis effects.

Substitution of Eq.~30! into Eqs.~4! and~5! yields the follow-
ing constitutive relations:

H « i j 5Si jkl skl1Qi jkl PkPl

Ei522Qklil sklPl1 l iE~P!
(31)

wherel iE(P), representing the hysteresis relation between po
ization and electric field in the absence of stresses, results f
the derivative ofF(Pi) with respect to the polarizationPi . The
quantity l i denotes the direction of electric field andE(P), the
variation of electric field due to the change in polarization, h
been defined in Eq.~27!.

For piezoelectric materials,Qi jkl can be expressed by two ma
terial constants,T1 andT2 . Equation~31! can then be simplified
to matrix form as follows:
MARCH 2001, Vol. 68 Õ 273



F «1

«2

«3

«4

«5

«6

G53
S11 S12 S13 0 0 0

S12 S22 S13 0 0 0

S13 S13 S33 0 0 0

0 0 0 S44 0 0

0 0 0 0 S44 0

0 0 0 0 0 S66

4 F
s1

s2

s3

s4

s5

s6

G13
T11T2 T1 T1 0 0 0

T1 T11T2 T1 0 0 0

T1 T1 T11T2 0 0 0

0 0 0 2T2 0 0

0 0 0 0 2T2 0

0 0 0 0 0 2T2

4 F
P1

2

P2
2

P3
2

P2P3

P3P1

P1P2

G (32)

and

FE1

E2

E3

G522F ~T11T2!s1P11T1s2P11T1s3P11T2s6P21T2s5P3

T2s6P11T1s1P21~T11T2!s2P21T1s3P21T2s4P3

T2s5P11T2s4P21T1s1P31T1s2P31~T11T2!s3P3

G1 l iE~P!. (33)
c

r

r

t

c
5
r
c

c

e

i

long
ter-
ed.
um
m
The
tu-
Note that induced strains from the linear constitutive relation
be written as follows:

« i j 5Si jkl skl1di jkEk . (34)

The hysteresis relation and the linear constitutive relation,
dressed by Eqs.~32! and ~34!, should predict the same induce
strains if the applied electric field varies in the vicinity of ze
value where the linear constitutive relation is effective. Therefo
the following relation is obtained:

F 0 0 d113

0 0 d113

0 0 d333

G F 0
0
E
G5FT11T2 T1 T1

T1 T11T2 T1

T1 T1 T11T2

GF 0

0

P22Pr
2
G . (35)

Using Tylor expansion to approximate the square term in Eq.~35!,
the material electrical-mechanical coupling constantsT1 and T2
can be expressed in terms ofdi jk , the piezoelectric coefficients in
the linear constitutive relation.

H T15
d113Ecl

22Pr~Ps2Pr !ln~12Pr /Ps!

T25
~d3332d113!Ecl

22Pr~Ps2Pr !ln~12Pr /Ps!

(36)

where a scalarl is introduced to obtain the best simulation for th
entire process rather than limiting to the vicinity of zero elect
field. This quantity should be determined specially for differe
materials.

Results and Discussions
The developed constitutive relation is used to model the hys

esis behavior of piezoceramics due to significant variations
electric field. The results obtained using the current model
correlated with available experimental results.

First, the hysteresis relation between polarization and elec
field is investigated in Figs. 4–6. The prediction obtained from
current model is validated with experimental results~@11#!. The
solid line and dash line denote the results obtained from the
rent model and experiments, respectively. A cylinder PZT
wafer of diameter one inch and thickness ten mils is conside
The repolarization is generated under quasi-static operating
ditions ~200 mHz!. The hysteresis characteristics are such that
saturation polarizationPs50.49 C/m2 and the coercive electric
field Ec51.2 MV/m. The remnant polarization of piezocerami
is approximated by the relation ofPr50.82Ps ~@12#!. Figure 4
presents the hysteresis loop between the polarization and th
plied electric field which is high enough to make the mater
saturated. It is observed that the current model can capture
characteristics of hysteresis loop in piezoceramics. With incre
in the electric field, the polarization direction varies from negat
to positive along the rising line due to dipole reorientation. On
274 Õ Vol. 68, MARCH 2001
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the saturation point is reached, the polarization decreases a
the decreasing line with decrease in the electric field. The hys
esis loop is also investigated if the material is not fully saturat
The hysteresis loops due to electric potentials with the maxim
values of 1600 V and 1000 V, that is, electric fields of 6.3 MV/
and 3.93 MV/m, are presented in Figs. 5 and 6, respectively.
maximum polarizations are smaller compared to the fully sa

Fig. 5 Comparison of electrical hysteresis loops „PZT 5A,
1600 V…

Fig. 6 Comparison of electrical hysteresis loops „PZT 5A,
1000 V…
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rated case. A good agreement between predictions using the
rent model and experimental data is observed. This indicates
the physical phenomena with different scales of driving elec
fields are modeled accurately by the present analytical mode

Further investigation is performed with soft PZT-51 ceram
including the hysteresis loop between the electric displacem
and electric field and the butterfly loop between the induced st
and electric field. The material properties of soft PZT-51 ceram
are listed in Table 1. The bulk specimen is used with the dim
sions 10310316 mm. The piezoceramic is driven by an elect
field up to a value of 1.125 MV/m along the longitudinal dire
tion. The correlations between the results obtained using the
rent model and from available experimental data~@12#!, with zero
and a constant compressive stress along the direction of the
tric field, are presented in Figs. 7–10. Figure 7 presents the
teresis loop between the electric displacement and electric
under a zero stress condition (s350 Mpa). Linear behavior is
observed with a small value of the electric field. This leads to
linear relation between the electric displacement and the ele
field addressed by the permittivity constant, representing the s
of the zero electric field point in the curve. With increase in t
applied electric field, the nonlinear effect due to the variation
the polarization resulting from significant 90 deg domain switc
ing is observed. If the electric field is applied opposite to t
direction of the polarization, both 180 deg and 90 deg dom
switching will occur when the applied electric field approach
the coercive value. This leads to the reversal of the polariza
direction. Good agreement is observed between the develo
model and the experimental results. The hysteresis loop with c
pressive stresss35220 Mpa is presented in Fig. 8. Compared
the case with zero stress, there is a significant decrease in bot
remnant value and the saturated value of the electric displacem
This is due to the fact that only depolarization~90 deg domain
switching! results from compressive stress, which leads to
decrease in the polarization value. Again, good agreement is
served between the theory and the experimental results. The
terfly loops representing variations of induced longitudinal str

Table 1 Material properties of soft PZT-51 ceramics

Elastic moduli S333353.03310211 m2/N
S331152.9310211 m2/N

Piezoelectric coefficient d33351520 pC/N
d3115570 pC/N

Relative dielectric permittivity g511300
Coercive electric field Ec50.676 MV/m
Remnant polarization Pr50.1938 C/m2

Fig. 7 Comparison of electrical hysteresis loop „PZT-51, s3
Ä0 Mpa…
Journal of Applied Mechanics
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with change in the electric field, under zero stress and a comp
sive stresss35220 Mpa, are presented in Figs. 9 and 10, resp
tively. The material constantl is assumed to be 2.4 to provide th
best approximation of the entire loop. Note that a zero strain
assumed for the initial state of the zero electric field. Figure
shows that the current model is capable of capturing the cha

Fig. 8 Comparison of electrical hysteresis loop „PZT-51, s3
ÄÀ20 Mpa…

Fig. 9 Comparison of longitudinal strain „PZT-51, s3Ä0 Mpa…

Fig. 10 Comparison of longitudinal strain „PZT-51, s3
ÄÀ20 Mpa…
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teristics of the butterfly hysteresis of piezoceramics. The lin
relation between the induced strain and the electric field is v
for small values of the applied electric field. This is predicted
the material coupling constantd333 in the linear constitutive rela-
tion. With increase in the applied electric field, the induced str
increases and nonlinearity is observed due to variation in the m
nitude of the polarization. With further increase in the elect
field up to the coercive value, the trend reverses due to the ch
in the polarization direction. It can also be observed from Fig
that in the case of zero compressive stress, hysteresis is accu
modeled except in the small region where polarization approac
zero value, that is, the region where polarization reverses its
rection. One reason for the misprediction is the shift in coerc
electric field during the process of electrical loading, which is n
considered in the current model. Figure 10 presents the hyste
under a constant compressive stress (s35220 Mpa). It can be
observed that the results obtained from the current model
experiments show good agreement. The range of the strain v
tion is smaller compared to the case without stress. This res
from the effect of depolarization due to the compressive stres

As shown in Fig. 11, a thin aluminum cantilever beam, with t
and bottom surface-bonded piezoelectric actuators at the roo
considered to investigate the nonlinear actuation effects.
beam dimensions are lengthL50.61 m, widthb50.061 m and
thickness tb5831024 m. The Young’s modulus is 7.235
31010 N/m2. The structure is modeled using the Bernoulli-Eu
beam theory. The piezoelectric actuators~PZT-51 ceramics! are of
length L/12, width b and thicknesstp53.17531024 m. The po-
larization directions of the top and the bottom actuators are
sumed upwards and downwards, respectively. First, actuation
fect without change in the polarization direction is investigated
Fig. 12. The electric field, varying from 0 V to 500 V, isapplied
upwards on only the top actuator. This implies no reversa

Fig. 11 Illustration of cantilever beam, surface-bonded actua-
tors

Fig. 12 Comparison of linear and nonlinear induced deflec-
tions
276 Õ Vol. 68, MARCH 2001
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polarization. Figure 12 presents comparison of the tip deflecti
with variation in actuation voltage using the current model and
linear constitutive model. Based on the result obtained using
current model, it can be observed that initially the deformat
increases rapidly with increase in the applied voltage due to
large variation in polarization. With further increase in actuatio
polarization approaches the saturation value. Therefore, variat
in both polarization and deformation are small. The significa
difference between the linear model and the present nonlin
model is due to the fact that the linear model neglects the ev
tion of polarization. It can also be observed that the linear mo
underpredicts the authority of shape correction (0;150 V),
which was pointed out by Crawley et al.@13#. Next, actuation
effect with a change in the polarization direction is investigated
Fig. 13. The electric field is applied upwards on both actuators
produce the bending moment. Again, variation of the tip defl
tion due to different actuation, using the current model and
linear model, is presented. It can be observed that initially
current model predicts the linear relation between the indu
deflection and the applied electric field. This is due to the fact t
before the electric field approaches the coercive value, polar
tion in the top actuator increases and polarization in the bot
actuator decreases. The combination of these two effects resu
linear variation between deformation and actuation. With furth
increase in the electric field, up to the value approaching a c
cive electric field~200 V!, the induced deflection produces signifi
cant nonlinearity due to the large variation in polarization of t
bottom actuator. The polarization of the bottom actuator rever
aligning with that of the top actuator. Therefore, the bending
formation becomes insignificant, which leads to zero deflectio
both actuators reach the point of saturation.

Concluding Remarks
A new theory is developed to model the hysteresis relat

between polarization and the electric field of piezoceramics.
explicit approximate solution is obtained to illustrate the hyst
esis loop by using saturation polarization, remnant polarizat
and coercive electric field. The elastic Gibbs energy is propose
address the coupling relations between an electrical field an
mechanical field. The nonlinear constitutive relations are deri
from the elastic Gibbs energy. The hysteresis relations betw
polarization, mechanical strain, and an electric field using the c
rent model are correlated with those obtained from available
periments. The constitutive relation derived from the curre
model is implemented in the analysis of a cantilever beam w
surface-bonded piezoelectric actuators. The following import
observations are made from this study.

Fig. 13 Comparison of linear and nonlinear induced deflec-
tions
Transactions of the ASME
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1 The developed model provides a good physical mean
accurately capture the hysteresis behavior of piezoceramic r
larization through the use of material parameters of satura
polarization, remnant polarization, and coercive electric field.

2 The new form of elastic Gibbs energy, based on the s
variables of stress and polarization, can accurately predict
nonlinearity of butterfly hysteresis. This leads to the constitut
relation and the solution of the coupling coefficients in terms
linear piezoelectric constants.

3 For the case of a cantilever beam with surface-bonded ac
tors the linear constitutive relation mispredicts actuation author
Significant nonlinearity is observed if the applied electric fie
approaches the coercive value. This phenomenon can be
dressed by the developed hysteresis model.
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Rheological Behavior of Confined
Fluids in Thin Lubricated Contacts
Continuum based methods are traditionally thought to be of little value in descri
boundary lubrication, or the mode of lubrication in molecular scale films that may oc
at asperity interactions during the sliding of nominally flat surfaces. There is consider
experimental evidence, which suggests that the classical theory may be valid with
fication to films as thin as several nanometers. In addition, lubricants, which ex
viscous liquid properties in bulk, may form attached solid-like elastic layers when
fined between solid surfaces. In the present paper, the simple ‘‘elastic foundation’’
cept is used to model the elastic layers, in contact with a viscous fluid film. Several ty
bearing contact flow problems are solved, giving hope that boundary lubrication
eventually be modeled in the same manner as hydrodynamic lubrication in thicker
@DOI: 10.1115/1.1354204#
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Introduction
It has become fairly well accepted based on wide-ranging

perimental and theoretical evidence that confined liquids in tri
logical contacts exhibit complex rheological behavior. In partic
lar, the presence of a solid-like confined layer adhering to
confining surfaces and roughly one molecular length in exten
postulated. Surface force experiments by Israelachvili@1# and col-
leagues, Gee et al.@2#, Homola et al.@3# on a similar apparatus o
Tonck et al.@4# and Georges et al.@5# all point to the existence o
solid-like structures in confined films of materials that exhi
purely viscous liquid properties in bulk. Such properties are a
thought to contribute to an intrinsic~i.e., not caused by roughnes
capillarity at asperity junctions, and other factors! stick-slip be-
havior of some lubricated contacts~Yoshizawa and Israelachvil
@6#!.

The most convincing experiment as to the presence of s
layers is that of Chan and Horn@7#. The slow squeezing of a thin
film between two crossed molecularly smooth mica cylinders
performed. The authors find that the squeeze rate is well pred
by the classical Reynolds equation of hydrodynamic lubricat
theory ~see, e.g., Hamrock@8#! down to about 30 nm. Reynold
equation is an integrated form of the Navier-Stokes equation
thin films of low curvature, without the presence of inertia or bo
forces. At thinner gaps, good correlation with experiment is
tained by simply adding a fictitious rigid layer of 0.7 nm to th
mica surfaces. Such a layer is really a curve fit parameter in t
analysis, but can be thought of as representing a solid layer du
lubricant microstructure. This approach predicts the trajectory
markably well ~62 percent! down to films of about 2 nm, afte
which further squeezing occurs in steps. The molecular siz
about 1 nm, and the continuum Reynolds theory works well o
scale much smaller than one might anticipate.

Molecular dynamics simulations have added further credenc
the existence of solid-like layers in thin fluid films, and to pred
tive ability of continuum models in films spanned by relative
few molecular lengths. Such studies are due to Thompson
Robbins@9#, Thompson et al.@10#, Hu et al.@11#, Landman et al.
@12#, and many others.

The present author has modeled the surface structures as

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ju
2, 1997; final revision, May 3, 1999. Associate Technical Editor: D. A. Sigin
Discussion on the paper should be addressed to the Technical Editor, Pro
Lewis T. Wheeler, Department of Mechanical Engineering, University of Hous
Houston, TX 77204-4792, and will be accepted until four months after final pu
cation of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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rous medium@13# and as a highly viscous layer@14#. Auslander
and Sidoroff@15# have modeled the layer as an elastic layer, us
what they called a ‘‘thin film approximation,’’ much like suc
fluid mechanical assumptions, but nothing like the thin film a
proximation of solid coatings.~They use a hydrostatic stress as t
normal components of the stress tensor.! In any case, they predic
an effective viscoelastic material response for the film, consis
with the experiments referred to above of Tonck et al.@4# and
Georges et al.@5#. They only apply their model to the simpl
squeezing case. In the present case, we extend the Auslende
Sidoroff work in the sense of using an elastic film, but we use
‘‘elastic foundation’’ or Winkler or ‘‘mattress’’ model discusse
by Johnson@16#. We are able to arrive at a much more gene
formulation, a modified Reynolds equation, and solve a numbe
‘‘classical’’ lubricated contact problems.

Analysis
Consider two rigid solid surfaces separated by a thin film

thicknessH(x,y,t). To model the effect of solid-lake layers w
assume that elastic layers of thicknessd(x,y,t) adhere to the rigid
surfaces, and the fluid region is given by

h~x,y,t !5H22d. (1)

The rigid surface separationH and the undeformed elastic laye
thicknessd i are assumed to be imposed on the problem, while
elastic layerd may be compressed according to the pressure in
film ~see Fig. 1!. The elastic deformation is assumed to obey t
simplified Winkler or ‘‘mattress’’ model, discussed by Johns
@16#, in which the displacementuz at any point depends only on
the pressurep at that point:

uz~x,y,t !5d i2d5d i

p~x,y,t !

K
(2)

andK is the elastic modulus. Reynolds equation holds for the fl
region:

]

]x S h3

12m

]p

]x D1
]

]y S h3

12m

]p

]y D5
1

2
U

]h

]x
1

]h

]t
(3)

assuming sliding at velocityU occurs only in thex-direction.
However, this equation is now strongly nonlinear due to the c
pling between film thicknessh andp:

h5hi12d i

p

K
, hi~x,y,t !5H22d i , (4)

wherehi is also treated as known or imposed.
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The velocity and shear stress in the flow region (d<z<H
2d) are given by

vx5
1

2m

]p

]x
@~z2d!22~z2d!h#1UF12

z2d

h G ,
(5)

vy5
1

2m

]p

]y
@~z2d!22~z2d!h#

tzx~z5d!5m
]vx

]z U
z5d

52
h

2

]p

]x
2

U

h
,

(6)

tzy~z5d!5m
]vy

]z U
z5d

52
h

2

]p

]x
.

The forces on the bearing surfaces are given by

Fx5E
0

LE
0

W

tzx~z5d!dydx, Fy5E
0

LE
0

W

tzy~z5d!dydx,

(7)

Fz5E
0

LE
0

W

~p2pa!dydx,

~pa is the ambient pressure! whereFx andFy are friction or trac-
tion forces, andFz is the supported load.

We nondimensionalize the above equations using

x* 5
x

L
y* 5

y

L
d* 5

d

Hi
h* 5

h

Hi
, hi* 5H* 22d i*

(8)

p* 5
p2pa

mVxiL
2/Hi

3 p* 5
p2pa

mVxiL/Hi
2 Vx* 5

Vx

Vxi
t* 5

t

L/Vxi

whereVxi andHi are a reference sliding velocity and film thick
ness, respectively. We assume a perturbation solution of the

h* 5hi* 12k* d i* p* p* 5p0* 1k* d i* pi* 1 . . . k* 5
mVxiL

KHi
2

(9)

We obtain a zero-order Reynolds equation~the conventional case!

]

]x* S hi*
3

12

]p0*

]x* D 1
]

]y* S hi*
3

12

]p0*

]y* D 5
1

2
Vx*

]hi*

]x*
1

]hi*

]t*
,

(10)

and a first-order perturbation modified Reynolds equation

Fig. 1 Schematic of contact
Journal of Applied Mechanics
-
orm

]

]x* S hi*
3

12

]pi*

]x* D 1
]

]y* S hi*
3

12

]pi*

]y* D
5Vx*

]p0*

]x*
12

]p0*

]t*
2hi* p0*

]hi*

]x*

]p0*

]x*

2
1

2
hi*

2F S ]p0*

]x* D 2

1S ]p0*

]y* D 2

1p0*
]2p0*

]x* 2 1p0*
]2p0*

]y* 2 G . (11)

The parameterk* represents a dimensionless elastic comp
ance of the layer, the ratio of the order of magnitude of the lub
cation theory pressuremVxiL/Hi

2 to the layer elastic modulus. In
physical terms, the zero-order perturbation solutionp0* with hi*
5H* represents the pressure for a Newtonian fluid film. T
zero-order solution withhi* 5H* 22d i* represents the solution fo
a film consisting of a Newtonian fluid and the surfaces covered
rigid layers of thicknessd. The first-order perturbation solutionp1*
is a correction to the rigid layer solution for the elasticity of th
layers.

The One-Dimensional Parallel Surface Squeeze Film.Con-
sider the case of two infinite parallel plates undergoing p
squeezing:H* 5H* (t* ) andVx* 50. See Fig. 1 for the case whe
the bearing slope is zero and the originx50 is at the midpoint.
The reference velocity in the nondimensionalization of Eq.~8! is
given byVxi5Vz(L/H).

In this case, Eq.~10! becomes

]2p0*

]x* 2 512
1

hi*
3

dhi*

dt*
, x* 56

1

2
:p0* 50. (12)

Integrating twice and applying boundary conditions at the fi
ends, we obtain

p0* 526
Ḣ*

hi*
3 S 1

4
2x* 2D , Ḣ* 5

]H*

]t*
. (13)

The first-order case is as follows:

]2p1*

]x* 2 512
1

hi*
3 F2

]p0*

]t*
2

1

2
hi*

2S ]p0*

]x* D 2

2
1

2
hi*

2p0*
]2p0*

]x* 2 G ,
(14)

x* 56
1

2
:p1* 50.

Again, integrating twice and applying the boundary conditio
we obtain for the first-order solution

p1* 536
1

hi*
7 F Ḣ* 2S 2

1

2
13x* 224x* 4D

1Ḧ* hi* S 5

48
2

1

2
x* 21

1

3
x* 4D G . (15)

The dimensionless load, from Eq.~7!, can be expressed in th
following form:

Fz* 5
Fz /W

mVxiL
2/Hi

2

52E
0

1/2

p* dx* 52
Ḣ*

hi*
3 1k* d i*

1

hi*
7 S 2

54

5
Ḣ* 21

12

5
Ḧ* hi* D .

(16)

Let us consider now a case similar to that considered by A
lander and Sideroff@15# with small rapid oscillationsv of the
surface superimposed on a slow steady rate of descent:
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v* 5
vL

Vxi
, H* 512Vz*

L

Hi
t* 1a* sin~v* t* !5hi* 12d i* ,

(17)

a* 5
a

Hi
.

Performing the indicated steps and taking the limit for sm
Vz* L/Hi and then smalla, the zero-order solution for the load i

Fz201* 52a* v* S cos~v* t* !1
12

5
m* d i* v* sin~v* t* ! D .

(18)

The 01 subscript denotes zero-order solution forVz* L/Hi and the
first-order solution fora* . If the film was considered to be
homogeneous linear viscoelastic material, the components
complex viscosity would be

h85m and h95mv* k* d i* 5m
d i

Hi

L3

Hi
3

vm

K
. (19)

Thus, we see classical linear viscoelasticity exhibited. The equ
lent relaxation timel and Deborah number De would be

l5
12

5

d i

Hi

L3

Hi
3

m

K
, De5lv. (20)

Due to the symmetry about the film center (x50), the global
friction force Fx equals zero.

The One-Dimensional Steady Wedge Contact.The dimen-
sionless film thickness is, again referring to Fig. 1,
s

s
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H* 512mx* 5hi* 12d i* , m5
H~0!2H~L !

H~0!
(21)

and forp* (x* ) the zero-order solution is

p0* 5
6

m H hi* ~x* !212hi* ~0!21

2
hi* ~0!hi* ~1!

hi* ~0!1hi* ~1!
@hi* ~x* !222hi* ~0!22#J . (22)

The first-order modified Reynolds equation takes the form

]

]x* S hi*
3

12

]p1*

]x* D 5
]p0*

]x*
2hi* p0*

]hi*

]x*

]p0*

]x*

2
1

2
hi*

2F S ]p0*

]x* D 2

1p0*
]2p0*

]x* 2 G
5

144m

hi*
4~hi* ~0!1hi* ~1!!2 @a01a1x* 1a2x* 2#,

(23)

x* 50, 1:pi* 50

a05hi* ~0!2hi* ~1! a1522hi* ~0!@3m225mhi* ~0!1hi* ~0!2#
(24)

a35m@2m217mhi* ~0!27hi* ~0!2#.

Again, integrating twice and applying the boundary conditio
we obtain for the first-order solution
pi* 5b2@hi* ~x* !222hi* ~0!22#1b3@hi* ~x* !232hi* ~0!23#1b4@hi* ~x* !242hi* ~0!24#1b5@hi* ~x* !252hi* ~0!25#
(25)

b25
48@m415m3hi* ~0!235m2hi* ~0!2160mhi* ~0!3230hi* ~0!4#

5m2hi* ~1!hi* ~1!~hi* ~0!1hi* ~1!!3
at
b352
48@7hi* ~0!227mhi* ~0!1m2#

m2~hi* ~0!1hi* ~1!!2 ,
(26)

b45
2144hi* ~1!hi* ~0!

m2~hi* ~0!1hi* ~1!!
, b55

2432hi* ~1!2hi* ~0!2

5m2~hi* ~0!1hi* ~1!!2 .

Dimensionless load and friction are computed from the follo
ing formulas:

Fz* 5E
0

1

p* dx* , Fx* 5E
0

1S h*
]p*

]x*
1

1

h* Ddx* . (27)

These integrals can be evaluated in closed form for the we
case, but the expressions are not shown here.

The Journal Bearing Contact. Film thickness expression
are given below.

h5c22d i1e cosu, hi* 511e i cosu,
(27a)

e i5
e

122d i*
, e5

e

c
.

The radial clearancec equalsRouter2Rinner!Router, and the cir-
cumferential coordinateu plays the role of x* where L
52pRouter. In dimensionless form, the layer thickness has be
folded into the eccentricity ratio, to take advantage of the conv
tional journal bearing integrals, which are expressed in term
11e cosu. The zero-order solution is
w-

dge

en
en-

of

p0* 5
6e i~21e i cosu!sinu

~21e i
2!hi*

2 (28)

and, as above, the first-order differential equation looks like

]

]x* S hi*
3

]p1*

]x* D 5
1

~hi* ~0!1hi* ~1!!hi*
4

3~c01c1 cosu1c2 cos 2u1c3 cos 3u!

(29)

c0526e i
2~28134e i

21e i
4!,

c1523e i~28149e i
2131e i

4!, (30)

c2526e i
2~1022e i

21e i
4!, c359e i

3~211e i
2!.

Integrating twice and applying the boundary conditions th
p1* (0)50 andp1* (p1)5p1* (p2) gives

p1* 5
12

5~21e i
2!2 3S d01d11d2

hi*
5 2

11276e i280e i
2220e i

3

~11e i !
4 D ,

d05112136e i
2210e i

4, d1525e i~13120e i
2!, (30a)

d2510e i
2~21e i

2!.
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Results and Discussion
Results for the case of simple squeezing flow between par

plates are shown in Figs. 2–5. The solution consists of the z
order solution, which treats the confined layers as a rigid so
The first-order solution, shown in Figs. 2 and 3, shows a reduc
of pressure~negative correction! due to the elastic softening of th
layers. The pressure correction for steady squeezing~Ḣ* 521,
Ḧ* 50! is reduced by acceleration~Ḣ* 521, Ḧ* 51! of the sur-
face, as shown in Fig. 2. The effect of the relative thickness of
layers is strong. A change from onlyd i* 50.1 tod i* 50.15 causes
the compliance effect to increase manifold~see Fig. 3!.

The complete pressure field is shown in Fig. 4. Three cases
portrayed. The case of a purely Newtonian film with no lay
yields the lowest pressure (d i* 50) in which case the acceleratio
H* doesn’t matter and the compliance parameterk* is not de-
fined. The case of rigid layers~k*50, d i* 50.1! produces much
larger pressure. Compliant layers reduce the pressure cons
ably, with and without acceleration. Compliance also adds a ti
dependent viscoelastic effect~due to the acceleration term! as ex-
hibited in the oscillating film case~Eqs. ~17!–~20!!. Boundary
lubrication would be the case ashi* 5H* 22d i* !H* . The
present perturbation analysis is valid fork* d i* !1 and thus could
be thought of as applying in conditions that approach bound
lubrication. Under these conditions, the model produces m
larger load carrying capacity than predicted by pure hydro
namic theory, consistent with the physical picture.

Figure 5 shows the ratio of normal force with the layers pres
to the force without the layers. The effect of compliance is
reduce effect of the confined layers, and the reduction is stro
for thinner films.

Results for the case of a simple wedge contact~plane slider
bearing! are shown in Figs. 6 and 7. This case is presented

Fig. 2 Pressure correction for layer compliance. Parallel
squeeze film, effect of acceleration, with parameter values:
H*Ä1, d i*Ä0.1.

Fig. 3 Pressure correction for layer compliance. Parallel
squeeze film, effect of layer thickness, with parameter values:
H*Ä1, Ḣ*ÄÀ1, Ḧ*Ä1.
Journal of Applied Mechanics
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representative of behavior in a converging contact, such as
occur between certain asperities in a micro-EHL contact, rat
than as plane slider performance per se.

The first-order solution, shown in Fig. 6, exhibits a reduction
pressure~negative correction! in the first part of the contact, and
then an increase is exhibited near the exit. This differs from
parallel squeeze case, where the only effect of compliance i
decrease. Recall that the displacement of the layer is simply
portional to pressure, see Eq.~2!. However, in the perturbation
modified Reynolds equation, Eq.~11!, it is the slope of the zero-
order pressure,]p0* /]x* ~proportional to the slope of the film!
which drives the correction as well as the zero-order press
itself. Thus the effect of the elastic layer may be to increase
decrease the correction depending on the sign of the slope.
effect of the relative thickness of the layers is strong, as a sm

Fig. 4 Dimensionless pressure with and without layers. Paral-
lel squeeze film, effect of layer compliance, with parameter val-
ues: H*Ä1, Ḣ*ÄÀ1,ḦÄ0.

Fig. 5 Load ratio of normal force „with and without elastic lay-
ers … versus film thickness. Parallel squeeze film, effect of ac-
celeration and compliance.

Fig. 6 Pressure correction for layer compliance. Wedge con-
tact, effect of wedge incline, with parameter value: d i*Ä0.1.
MARCH 2001, Vol. 68 Õ 281
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change of the slope parameterm causes a large change in pressu
correction. The exit filmhi* (1) changes from 0.2 to 0.3~50 per-
cent! for a change inm from 0.6 to 0.5~17 percent!.

The complete pressure field is shown in Fig. 7. Again, th
cases are portrayed. The case of a purely Newtonian film with
layer yields the lowest pressure (d i* 50) in which case the com
pliance parameterk* is not defined. The case of rigid layer
~k*50, d i* 50.1! produces much larger pressure everywhe
Compliant layers~k*51, d i* 50.1! generally reduce the pressur
but increase it slightly at the exit.

Load and friction behavior for the wedge contact is shown
Figs. 8~a! and~b!. Both parameters increase with the slope of t
wedge. Recall that for all predictions generated by hydrodyna
theory, friction is smaller than load by order of magnitude fac

Fig. 7 Dimensionless pressure with and without layers.
Wedge contact, effect of layer compliance, with parameter
value: mÄ0.5.

Fig. 8 Wedge contact load and friction behavior. The cases
shown are „I… no layer, „II… rigid layer, and „III… compliant layer.
„a… Dimensionless load; „b… dimensionless friction.
282 Õ Vol. 68, MARCH 2001
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H/L, which is reflected in the dimensionless scaling. Note that
layers increase both load and friction while compliance tends
reduce these forces. As to modeling of boundary lubrication,
present conceptual model would better represent global load
friction for a contact consisting of an ensemble of microconta
such as the representative wedge. Global load is likely the sum
the load of the microcontacts. However, global sliding friction
more probably influenced by additional factors such as ela
deformation, ploughing action, etc.

Similarly, results for the case of a journal bearing conta
~plane slider bearing! are shown in Figs. 9 and 10. As above, th
case is presented as representative of behavior in a conver
diverging contact, rather than as journal bearing behavior.

The first-order solution, shown in Fig. 9 shows a small red
tion of pressure~negative correction! in the region of maximum
film, then a sharp increase is found at the minimum film poi
The same kind of arguments apply here as for the wedge c
concerning the effect of the slope of the pressure and displ
ment, and the strong effect of the relative local layer thicknes

The complete pressure field is shown in Fig. 10. Again,
same three cases are portrayed and the same trends are exh

Conclusions
Continuum based methods are traditionally thought to be

little value in describing boundary lubrication, or the mode
lubrication in molecular scale films such as occur at asperity
teractions during the sliding of nominally flat surfaces. Pure h
drodynamic theory predicts no load carrying action in these c
ditions. In fact, a definition of boundary lubrication is lubricatio
where lubricant viscosity in bulk appears to play a negligible r
in contact behavior.

Fig. 9 Pressure correction for layer compliance. Journal bear-
ing contact, effect of eccentricity ratio, with parameter value:
d iÄ0.1.

Fig. 10 Dimensionless pressure with and without layers. Jour-
nal bearing contact, effect of layer compliance, with parameter
value: eÄ0.4.
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A rheological model has been developed which is appropr
to study boundary lubrication in very thin films. The lubrica
microstructure in confined contacts is described through the us
a hypothetical compliant elastic layer that adheres to the s
surfaces. The model is applicable to conditions in which the m
lecular length scale is the same order of magnitude as the
thickness.

The model contains three property parameters:~1! the conven-
tional viscosity,~2! the thickness of the elastic layer, and~3! an
effective elastic modulus of the solid-like layer. In principl
the effective properties may be found by molecular dynam
simulations or by curve fitting results to surface force appara
experiments.

An appropriate modified Reynolds equation is developed wh
is not much more difficult to solve than the classical equati
Behavior in several typical contacts is found: the simple sque
film, the converging wedge, and the converging/diverging jour
bearing. The strongest effect of the solid-like layer~zero-order
perturbation! is to greatly increase the lubricating action relati
to predictions of the pure hydrodynamic theory, i.e., for a giv
set of conditions~film thickness, surface speed, viscosity in bul!
the predicted pressure is larger. Classical hydrodynamics doe
predict sufficient load carrying to take place in boundary lubri
tion conditions. The layer compliance may further increase
decrease the pressure through a first-order correction.

In many otherwise sophisticated computer programs to ana
manufacturing processes, engine dynamics and the like, frictio
crucial component arising from boundary lubrication conditio
is entered as simply a free parameter. Current studies see
bring, incrementally, the study of boundary lubrication to a le
appropriate to its use in modern engineering predictive tools.
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Viscoelastic Functionally Graded
Materials Subjected to Antiplane
Shear Fracture
In this paper, a crack in a strip of a viscoelastic functionally graded material is stud
under antiplane shear conditions. The shear relaxation function of the material is
sumed asm5m0 exp~by/h! f ~t!, where h is a length scale and f(t) is a nondimension
function of time t having either the form f~t!5m` /m01~12m` /m0!exp~2t/t0! for a
linear standard solid, or f~t!5~t0 /t!q for a power-law material model. We also consid
the shear relaxation functionm5m0 exp~by/h!@t0 exp~dy/h!/t# q in which the relax-
ation time depends on the Cartesian coordinate y exponentially. Thus this latter m
represents a power-law material with position-dependent relaxation time. In the a
expressions, the parametersb, m0 , m` , t0 ; d, q are material constants. An elastic crac
problem is first solved and the correspondence principle (revisited) is used to o
stress intensity factors for the viscoelastic functionally graded material. Formulas
stress intensity factors and crack displacement profiles are derived. Results for
quantities are discussed considering various material models and loa
conditions.@DOI: 10.1115/1.1354205#
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1 Introduction
Functionally graded materials are the outcome of the nee

accommodate materials exposure to nonuniform service req
ments. Those materials are characterized by continuously var
properties due to continuous change inmicrostructural details
over defined geometrical orientations and distances, such as
position, morphology, and crystal structure. The material gra
tion may be either continuous or layered comprised, for exam
of gradients of ceramics and metals. In applications involv
severe thermal gradients~e.g., thermal protection systems!, func-
tionally graded material systems take advantage of heat and
rosion resistance typical of ceramics, and mechanical strength
toughness typical of metals. Other relevant applications of fu
tionally graded materials involve polymers~@1#!, biomedical sys-
tems ~@2#!, natural composites~@3#!, and thermoelectric device
for energy conversion~@4#!. Various thermomechanical problem
associated to functionally graded materials have been studied
example, constitutive modeling~@5–7#!, higher order theory~@8#!,
thermal stresses~@9,10#!, static and dynamic response of plat
~@11#!, yield stress gradient effect~@12#!, strain gradient theory
~@13#!, fracture behavior~@14–16#!, and statistical model for brittle
fracture~@17#!.

The antiplane shear crack problem has been extensively stu
in the literature as it provides the basis for understanding
opening mode crack problem. Several numerical and analyt
semi-analytical solutions have been presented considering ho
geneous materials~e.g., @18,19#!, nonhomogeneous materia
~e.g., @20,21#!, and bonded homogeneous viscoelastic lay
~@22#!. However, to the best of the authors’ knowledge, the
is no published analytical/semi-analytical type solution for t
problem of an antiplane shear crack in viscoelastic function
graded materials. This is the subject of this paper, which cons

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Fe
24, 2000; final revision, July 13, 2000. Associate Editor: M.-J. Pindera. Discus
on the paper should be addressed to the Editor, Professor Lewis T. Wheeler, D
ment of Mechanical Engineering, University of Houston, Houston, TX 77204-47
and will be accepted until four months after final publication of the paper itself in
ASME JOURNAL OF APPLIED MECHANICS.
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of applying Paulino and Jin’s~@23#! revisited correspondenc
principle for viscoelastic functionally graded materials to fractu
mechanics.

One of the primary application areas of functionally grad
materials is high-temperature technology. Materials will exhi
creep and stress relaxation behavior at high temperatures.
coelasticity offers a basis for the study of phenomenological
havior of creep and stress relaxation. In this paper, viscoela
fracture~stationary crack! of functionally graded materials is stud
ied under antiplane shear conditions. Specifically, an infinit
long strip containing a crack parallel to the strip boundaries
investigated. The shear relaxation function of the material is
sumed to take separable forms in space and time, i.e.,

m5m0 exp~by/h! f ~ t !,

whereh is a length scale andf (t) is a nondimensional function o
time t having either the form

f ~ t !5m` /m01~12m` /m0!exp~2t/t0!: linear standard solid

or

f ~ t !5~ t0 /t !q: power-law material.

We also consider the following variant form of the power-la
material model

m5m0 exp~by/h!@ t0 exp~dy/h!/t#q,

in which the relaxation time depends on the Cartesian coordin
y exponentially. In the above expressions, the parametersb, m0 ,
m` , t0 ; d, q are material constants. An elastic crack problem
first solved and the ‘‘correspondence principle’’ is used to obt
the stress intensity factor for the viscoelastic functionally grad
material.

This manuscript is organized as follows. The next section p
sents the basic equations of viscoelasticity theory of function
graded materials, which are the basis for this study. Then
correspondence principle is revisited and recast in the form
cently given by Paulino and Jin@23#, followed by a discussion of
relaxation functions with separable forms. Next, the antipla
shear problem is formulated together with an integral equa
solution approach for a crack in a viscoelastic functionally grad
material strip. Formulas for stress intensity factors~as a function

b.
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of geometry, material constants, and loading! are derived consid-
ering both Heaviside step function loading and exponentially
caying or increasing loading. Afterwards, the recovery of the d
placement field is carried out and applied to obtain the ac
crack profile. Several results for the above problem are prese
and discussed. Finally, conclusions are inferred and extension
this work are pointed out. An Appendix, showing the integ
equation kernel derivation, supplements the paper.

2 Basic Equations
The basic equations of quasi-static viscoelasticity of functi

ally graded materials are the equilibrium equation

s i j , j50, (1)

the strain-displacement relationship

« i j 5
1
2 ~ui , j1uj ,i !, (2)

and the viscoelastic constitutive law

si j 52E
0

t

m~x;t2t!
dei j

dt
dt, skk53E

0

t

K~x;t2t!
d«kk

dt
dt, (3)

with

si j 5s i j 2
1
3 skkd i j , ei j 5« i j 2

1
3 «kkd i j , (4)

wheres i j are stresses,« i j are strains,si j and ei j are deviatoric
components of the stress and strain tensors, respectively,ui are
displacements,d i j is the Kronecker delta,x5(x1 ,x2 ,x3), m(x,t)
and K(x,t) are the relaxation functions in shear and dilatatio
respectively,t denotes the time, and the Latin indices have
range 1, 2, 3 with repeated indices implying the summation c
vention.Note that for functionally graded materials the relaxatio
functions also depend on spatial positions, whereas in homo
neous viscoelasticity, they are only functions of time, i.e.m[m~t!
andK[K(t) ~@24#!.

3 Correspondence Principle Revisited
In general, the correspondence principle of homogeneous

coelasticity theory does not hold for functionally graded materia
However, for a class of functionally graded materials with rela
ation functions of the form

m~x,t !5m0m̃~x! f ~ t !,
(5)

K~x,t !5K0K̃~x!g~ t !,

wherem0 and K0 are material constants, andm̃(x), K̃(x), f (t),
and g(t) are nondimensional functions, Paulino and Jin@23#
showed that the correspondence principle still holds. In this c
the Laplace transformed nonhomogeneous viscoelastic solu
can be obtained directly from the solution of the correspond
nonhomogeneous elastic problem by replacingm0 and K0 with
m0p f̄(p) and K0pḡ(p), respectively, where f(̄p) and ḡ(p) are the
Laplace transforms of f(t) and g(t), respectively, and p is
transform variable. The final solution is realized upon inverti
the transformed solution.

Among the various models for graded viscoelastic materials
the standard linear soliddefined by

m~x,t !5m`~x!1@me~x!2m`~x!#expF2
t

tm~x!G ,
(6)

K~x,t !5K`~x!1@Ke~x!2K`~x!#expF2
t

tK~x!G ,
and thepower-law modelgiven by

m~x,t !5me~x!F tm~x!

t Gq

, K~x,t !5Ke~x!F tK~x!

t Gq

, 0,q,1,

(7)
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wheretm(x) and tK(x) are the relaxation times in shear and bu
muduli, respectively, andq is a material constant. Particular in
stances of the above models for graded viscoelastic materials
be obtained such that assumption~5! is satisfied. Thus the discus
sion below indicates the type of revision needed in the gen
viscoelastic models so that the correspondence principle
holds.

• Standard linear solid~6!. If the relaxation timestm andtK are
constants, ifme(x) andm`(x) have the same functional form, an
if Ke(x) andK`(x) also have the same functional form, then t
model ~6! satisfies assumption~5!.

• Power-law model~7!. If the relaxation timestm and tK are
independent of spatial position in model~7!, then assumption~5!
is readily satisfied. Moreover, even if the relaxation times dep
on the spatial position in model~7!, then the corresponding non
homogeneous elastic material has the properties

m5me~x!@ tm~x!#q, K5Ke~x!@ tK~x!#q, (8)

rather thanm5me(x) and K5Ke(x). Thus assumption~5! is
satisfied again.

4 Viscoelastic Antiplane Shear Problem
Under antiplane shear conditions, the only nonvanishing fi

variables are

u3~x,t !5w~x,y;t !,

s31~x,t !5tx~x,y;t !, s32~x,t !5ty~x,y;t !,

2«31~x,t !5gx~x,y;t !, 2«32~x,t !5gy~x,y;t !,

with x5(x1 ,x2)5(x,y). Here new notations for the nonvanishin
displacement, stresses, and strains are used for the sak
simplicity. The basic equations of mechanics satisfied by th
variables are

]tx

]x
1

]ty

]y
50, (9)

gx5
]w

]x
, gy5

]w

]y
, (10)

tx5E
0

t

m~x,y;t2t!
dgx

dt
dt, ty5E

0

t

m~x,y;t2t!
dgy

dt
dt. (11)

In the present study, the following three material models
employed. The first is thestandard linear solid~see ~6!! with
constant relaxation time

m5m0 exp~by/h!Fm`

m0
1S 12

m`

m0
DexpS 2

t

t0
D G , (12)

whereb, m0 , m` , andt0 are material constants andh is a length
scale. The second model is apower-law material~see~7!! with
constant relaxation time

m5m0 exp~by/h!S t0

t D q

. (13)

The third model is also apower-law material~see~7!!, but with
position-dependent relaxation time

m5m0 exp~by/h!F t0 exp~dy/h!

t Gq

5m0 exp@~b1dq!y/h#S t0

t D q

,

(14)
whered andq are material constants.

5 Relaxation Functions With Separable Forms
The present discussion is based on the main argument tha

functional form of the chosen relaxation function~s! is appropriate
if the basic constitutents of the functionally graded material ha
MARCH 2001, Vol. 68 Õ 285
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approximately the same relaxation pattern. Thus this argum
indicates the need for an approach integrating mechanics mo
ing, material properties experiments, and synthesis~see@25# for a
review of fabrication processes for functionally graded materia!.
This point is elaborated upon below.

It can be seen in~12!, ~13!, and~14! that the relaxation modul
are separable functions in space and time. This is necessary fo
revisited correspondence principle~see Section 3! to be applied
~@23#!. This kind of relaxation functions may be appropriate fo
functionally graded material with its constituent materials hav
the same time-dependence of shear modulus. For model~12!, this
means that the constituents should have the same ratiom` /m0 and
relaxation timet0 . For model~13!, this implies that the constitu
ents should have the same relaxation timet0 and parameterq. For
model~14!, however, it is only required that the constituents ha
the same parameterq. The constituents may have different rela
ation times. Potentially, this kind of functionally graded materi
may include some polymeric/polymeric materials such
Propylene-homopolymer/Acetal-copolymer. The relaxation
havior of Propylene homopolymer and Acetal copolymer
found to be similar—see Figs. 7.5 and 10.3, respectively,
Ogorkiewicz@26#.

Another argument potentially in favor of the selected class
relaxation functions~5! is the technique developed by Lambro
et al. @27# for fabricating large scale polymeric functionall
graded materials. The technique consists of generating a con
ously inhomogeneous property variation by selective ultravio
irradiation of a polyethylene carbon monoxide copolymer. Due
the fact that the functionally graded material is obtained by c
trolling ultraviolet irradiation time of the same base polymer, w
conjecture that the viscoelastic behavior of such material may
predicted by~5!. However, further experimental research needs
be done in order to validate or invalidate the present conjectu

6 Mode III Crack in a Functionally Graded Material
Strip

Consider an infinite nonhomogeneous viscoelastic strip cont
ing a central crack of length 2a, as shown in Fig. 1. The strip is
fixed along the lower boundary (y52h) and is displacedw(t)
5w0W(t) along the upper boundary (y5h), wherew0 is a con-
stant andW(t) is a nondimensional function of timet. It is sup-
posed that the crack lies on thex-axis, from2a to a, and is of
infinite extent in thez-direction ~normal to thex-y plane!. The
crack surfaces remain traction-free. The boundary condition
the crack problem, therefore, are

w50, y52h, uxu,`, (15)

w5w0W~ t !, y5h, uxu,`, (16)

ty50, y50, uxu<a, (17)

Fig. 1 A viscoelastic functionally graded material strip occu-
pying the region zx zË` and zy zÏh with a crack at zx zÏa and
yÄ0. The lower boundary of the strip „yÄÀh … is fixed and the
upper boundary „yÄh … is subjected to uniform antiplane dis-
placement w 0W„t …. The symbol : indicates an arrow perpen-
dicular to the strip plane and pointing toward the viewer.
286 Õ Vol. 68, MARCH 2001
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ty~x,01!5ty~x,02!, a,uxu,`, (18)

w~x,01!5w~x,02!, a,uxu,`. (19)

According to the correspondence principle~see Section 3!, one
can first consider a nonhomogeneous elastic material with
shear modulus

m5m0 exp~by/h!, (20)

and the viscoelastic solutions for models~12! and ~13! may be
obtained by the correspondence principle. For the material mo
~14! the viscoelastic solution can still be obtained by the cor
spondence principle provided that the corresponding elastic m
rial has the shear modulusm5m0 exp@(b1qd)y/h# ~cf. ~5! and
~14!!.

For the elastic crack problem, the solution consists of a reg
solution ~for an uncracked strip!

w5w~y!5
exp~b!2exp~2by/h!

exp~b!2exp~2b!
w0 , (21)

tx50, ty5
bm0w0 /h

exp~b!2exp~2b!
(22)

and a perturbed solution~by the crack! satisfying the following
boundary conditions:

w50, y56h, uxu,`, (23)

ty52
bm0w0 /h

exp~b!2exp~2b!
, y50, uxu<a, (24)

ty~x,01!5ty~x,02!, a,uxu,`, (25)

w~x,01!5w~x,02!, a,uxu,`. (26)

The governing differential equation ofw(x,y) for the nonho-
mogeneous elastic material~20! is

¹2w1
b

h

]w

]y
50. (27)

By using the Fourier transform method~see, for example,@28#!,
the boundary value problem described by Eqs.~23! to ~27!
can be reduced to the following singular integral equation~see
Appendix!:

E
21

1 F 1

s2r
1k~r ,s,b!Gw~s!ds52

2pbw0 /h

exp~b!2exp~2b!
, ur u<1,

(28)

where the unknown density functionw(r ) is given by

w~x!5
]

]x
@w~x,01!2w~x,02!#, (29)

the nondimensional coordinatesr ands are

r 5x/a, s5x8/a, (30)

respectively, and the Fredholm kernelk(r ,s,b) is

k~x,x8,b!5aE
0

`

P~x,x8,j,b!dj (31)

with P(x,x8,b) being given by

P~x,x8,j,b!5@j~A~b/h!214j222j!22~b2/h212j2!

3exp~2Ab214h2j2 !

2j~2j1A~b/h!214j2 !

3exp~22Ab214h2j2 !#
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sin@~x2x8!j#

j@12exp~22Ab214h2j2!#A~b/h!214j2
. (32)

As expected, in the limit ofh→` ~free space! andb→0 ~homo-
geneous material case!, we obtain thatP(x,x8,j,b)→0. More-
over, the kernel k(x,x8,b) is symmetric with respect tob. Such
symmetry will be addressed later in the paper. The functionw(r )
can be further expressed as

w~r !5c~r !/A12r 2, (33)

wherec(r ) is continuous forr P@21,1#. Whenw(r ) is normal-
ized byw0 /h, the elastic Mode III stress intensity factor,K III

e , is
obtained as

K III
e 52m0S w0

2hDApac~1,b!. (34)

Here, the notationc~1,b! is adopted to emphasize the dependen
of c~1! on b.

7 Stress Intensity Factors
The stress intensity factors for viscoelastic functiona

graded materials satisfying~5! can be obtained using the co
respondence principle between the elastic and the Lap
transformed viscoelastic equations. Thus, formulas for stress
tensity factors are derived first for general time-dependent lo
ing, and then the results obtained are particularized for expo
tially decaying or increasing loading and Heaviside step funct
loading.

As stated above, for nonhomogeneous viscoelastic mater
the Mode III stress intensity factor,K III , can be obtained by
means of the correspondence principle~see Section 3!. The
upper boundaryy5h of the strip is subjected to an antiplan
displacementw0W(t), as illustrated by Fig. 1. In this case, th
stress intensity factors for material models~12!, ~13!, and ~14!
will be

K III 52m0S w0

2hDApac~1,b!L21

3H Fm`

m0
1S 12

m`

m0
D p

p11/t0
GW̄~p!J , (35)

K III 52m0S w0

2hDApac~1,b!L21@ t0
qG~12q!pqW̄~p!#, (36)

and

K III 52m0S w0

2hDApac~1,b1qd!L21@ t0
qG~12q!pqW̄~p!#,

(37)

respectively, wherep is the Laplace transform variable,L21 rep-
resents the inverse Laplace transform,W̄(p) is the Laplace trans-
form of W(t), andG~•! is the Gamma function.

7.1 Stress Intensity Factors for Exponentially Decaying or
Rising Loading. Consider as an example

W~ t !5exp~2t/tL!→W̄~p!51/~p11/tL! (38)

where tL is a constant measuring the time variation of t
load. Note thattL.0 represents an exponentially decaying loa
while tL,0 corresponds to an exponentially rising load. This ki
of time-dependent loading has been used by Broberg@29#. The
stress intensity factors under the loading condition~38! then
become

K III 52m0S w0

2hDApac~1,b!F~ t !, (39)

where
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F~ t !5
m`

m0
expS 2

t

tL
D1S 12

m`

m0
D 1

t02tL

3F t0 expS 2
t

tL
D2tL expS 2

t

t0
D G , (40)

for the standard linear solid~12!, and

F~ t !5S t0

t D q

2
1

tL
E

0

tS t0

t D q

expS 2
t2t

tL
Ddt, (41)

for the power-law model~13!.
For thepower-law material with position-dependent relaxatio

time ~14!, the stress intensity factor is

K III 52m0S w0

2hDApac~1,b1qd!F~ t !, (42)

whereF(t) is given in ~41!.

7.2 Stress Intensity Factors for Heaviside Step Function
Loading. For the Heaviside loading conditions,

W~ t !5H~ t !→W̄~p!51/p, (43)

where H(t) is the Heaviside step function. The stress intens
factors then become~cf. ~39!!

K III 52m0S w0

2hDApac~1,b!F~ t !,

whereF(t) is given by

F~ t !5
m`

m0
1S 12

m`

m0
DexpS 2

t

t0
D , (44)

for the linear standard solid~12!, and

F~ t !5S t0

t D q

(45)

for the power-law model~13!.
Finally, the stress intensity factor for thepower-law

material with position-dependent relaxation time~14! is given by
~cf. ~42!!

K III 52m0S w0

2hDApac~1,b1qd!F~ t !,

whereF(t) is provided in~45!. It is seen thatq andd ~parameters
describing the position dependence of the relaxation time! affect
the stress intensity factor only through the combined param
(b1qd).

8 Crack Displacement Profile
Accurate representation of the crack profile is relevant in fr

ture mechanics, especially when the crack-surface displaceme
measured experimentally and correlated with results obtained
numerical methods. Thus the crack displacement profile for
problem illustrated in Fig. 1 is recovered in this section. Fir
general time-dependent loading is considered, and then the fo
lation is particularized for the Heaviside step function loading a
the exponentially decaying or rising loading.
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It follows from Eqs. ~29! and ~33!, and the correspondenc
principle, that the crack-sliding displacement under the tim
dependent loading,w0W(t), can be expressed by the dens
function w(x) or c(r ) ~normalized byw0 /h! as follows:

@w#5w~x,01!2w~x,02!
(46)

5
w0W~ t !

h E
2a

x

w~x8!dx85w0W~ t !S a

hD E
21

r c~s!

A12s2
ds.

The displacement at the upper surface of the crack is given b
t

v

t

i

n

n

a
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w~x,01!5
1

2
@w#1

1

2p Fw0W~ t !

h G E
2a

a

kd~x,x8!w~x8!dx8

5
1

2
@w#1

w0W~ t !

2p S a

hD E
21

1

kd~r ,s!
c~s!

A12s2
ds,

(47)

wherekd(x,x8) is
kd~x,x8!5E
0

` @2b12b exp~2Ab214h2j2!2b exp~22Ab214h2j2!#

A~b/h!214j2@12exp~22Ab214h2j2!#
3

sin@~x2x8!j#

j
dj. (48)
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Note that the displacements are not symmetric with respectb
~see Fig. 1!, however, the stress intensity factors are~cf. ~28! and
~32!!. The displacement at the lower crack surface is then gi
by

w~x,02!5w~x,01!2@w#. (49)

In expressions~46! and ~47!, W(t) is given in ~38! for the
exponentially decaying or rising load. For the Heaviside s
function load,W(t) is given by~43!.

9 Numerical Aspects
To obtain the numerical solution of integral Eq.~28!, c(r ) is

expanded into a series of Chebyshev polynomials of the first k
By noting the relationship~33! betweenw(r ) andc(r ), w(r ) is
expressed as follows~Erdogan et al.@28#!:

w~r !5
1

A12r 2 (n51

`

anTn~r !, ur u<1, (50)

whereTn(r ) are Chebyshev polynomials of the first kind andan
are unknown constants. By substituting the above equation
integral Eq.~28!, we have

(
n51

`

$pUn21~r !1Hn~r !%an52
pbw0 /h

exp~b!2exp~2b!
, ur u<1,

(51)

where Un21(r ) are Chebyshev polynomials of the second ki
andHn(r ) are given by

Hn~r !5E
21

1

ak~r ,s,b!
Tn~s!

A12s2
ds. (52)

To solve the functional Eq.~51!, the series on the left side is firs
truncated at theNth term. A collocation technique is then used a
the collocation points,r i , are chosen as the roots of the Cheb
shev polynomials of the first kind

r i5cos
~2i 21!p

2N
, i 51,2, . . . ,N. (53)

The functional Eq.~51! is then reduced to a linear algebraic equ
tion system

(
n51

N

$pUn21~r i !1Hn~r i !%an52
pbw0 /h

exp~b!2exp~2b!
,

i 51,2, . . . ,N. (54)

After an(n51,2, . . . ,N) are determined, the nondimension
stress intensity factor,2c~1,b!, is computed as follows:
o

en

ep

nd.

into

d

t
d

y-

a-

l

2c~1,b!52(
n51

N

an . (55)

In the following numerical calculations, it is found that 2
collocation points lead to a convergent stress intensity fac
result.

It is known from (39) that the stress intensity factor is a mu
plification of three parts. The first term is a dimensional ba
m0(w0/2h)Apa, the second term is a geometrical and mater
nonhomogeneity correction factor,2c(1,b), which can be ob-
tained from the numerical solution of singular integral Eq. (28
and the third term is the time evolution of stress intensity fact
F(t), which is obtained analytically from the inverse Laplac
transform.

Note that, according to Fig. 1, the crack is located at midhei
of the material strip and the origin of the coordinate system (x,y)
is located at the center of the crack. Such choice of refere
system introduces certain symmetries in the solution, which
discussed in the examples below.

10 Results
Numerical results for stress intensity factors are first obtain

for a homogeneous elastic strip~see Fig. 1!. According to Table 1,
the stress intensity factors are found in good agreement with th
reported in the literature, e.g., the handbook by Tada et al.@30#.
Furthermore, for a homogeneous viscoelastic strip, it is evid
that the stress intensity factor is given by~39! with b50 andF(t)
is given by~40! and~41! for the exponentially decaying or rising
loading, and by~44! and ~45! for the Heaviside step function
loading. Note that the functionF(t) is not related to the nonho
mogeneous material parameterb.

Figure 2 shows normalized stress intensity factor~see ~39!!,
2c~1,b!, versus the nonhomogeneous parameterb considering
various strip thicknessesh/a for the linear standard solid~12!
and the power-law model with constant relaxation time~13!. Note
that although the relaxation times are different for both mod

Table 1 Mode III stress intensity factors „SIF… for a homoge-
neous strip

h/a
SIF

~this study!
SIF

~@30#!

0.5 0.5360 0.5631
1.0 0.7598 0.7641
1.5 0.8626 0.8634
2.0 0.9136 0.9138
5.0 0.9840 0.9840

10.0 0.9959 0.9959
Transactions of the ASME
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~cf. Eqs.~40! and ~41!, or Eqs.~44! and ~45!!, they do have the
same solution2c~1,b! ~see Section 5!. The stress intensity
factor decreases with increasingubu for all thickness cases (h/a)
considered. The stress intensity factor is lower than that of
corresponding homogeneous material~b50!. It is noted that the
stress intensity factor is an even function ofb. However, this
symmetry is valid only for the crack located in the center of t
strip.

Fig. 2 Normalized Mode III stress intensity factor versus non-
homogeneous material parameter b for various strip thick-
nesses considering the linear standard solid and the power-law
material with constant relaxation time
Journal of Applied Mechanics
the

he

Figure 3 shows normalized stress intensity factor~see ~42!!,
2c(1,b1qd!, versus the nonhomogeneous parameterb for vari-
ous strip thicknessesh/a and threed values for the power-law
model with position-dependent relaxation time~14!. The effect of
spatial position dependence of the relaxation time on the st
intensity factor is reflected through the parameterd. The param-
eterq is taken as 0.4 in all calculations. Thus the curves ford561
may be obtained from the curved50 by shifting this curve by
b570.4. It is clear from Fig. 3 that with respect to the corr
sponding model with constant relaxation time~i.e., d50!, a posi-
tive d lowers the stress intensity factor whenb.0 and increases
the stress intensity factor forb less than20.5qd. A negatived
lowers the stress intensity factor whenb,0 and increases the
stress intensity factor forb larger than 0.5qd.

Figure 4 illustrates the time evolution of normalized stress
tensity factors,F(t), considering both Heaviside step functio
loading and exponentially decaying or rising loading for the st
dard linear solid~see~40! and ~44!! and the power-law materia
~see~41! and~45!!. The ratiom` /m0 is taken as 0.5 in all subse
quent calculations for the standard linear solid. It is evident t
under the fixed displacement condition, stress intensity factor
creases monotonically with increasing time for Heaviside s
function loading and exponentially decaying loading~Figs. 4~a!
and 4~b!!. For exponentially rising loading, however, the stre
intensity factors will increase with time for longer times~Figs.
4~c! and 4~d!!. By observing the plots in Figs. 4~a! and 4~b!, one
notices that, for exponentially decaying loading, the stress in
sity factor can become negative as the ratiotL /t0 decreases, which
occurs, for example, fortL /t051.0. This happens because
stress relaxation for long-time behavior.Note that a negative
stress intensity factor does not imply crack closure because
Fig. 3 Normalized Mode III stress intensity factors versus nonhomogeneous parameter b for three d
values and qÄ0.4, „a… h ÕaÄ0.5; „b… h ÕaÄ1.0; „c… h ÕaÄ2.0; „d… h ÕaÄ20.0
MARCH 2001, Vol. 68 Õ 289
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Fig. 4 Time variation of normalized Mode III stress intensity factor „a… standard linear solid „decaying
loading …; „b… power-law material „decaying loading …; „c… standard linear solid „rising loading …; „d… power-
law material „rising load …
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associated to a Mode III crack, and not a Mode I (or mixed mo
crack. Thus, in the present study, a negative stress intensity fa
is allowed without violating the crack face traction free con
tion. The crack faces do not close, they just slide in the oppo
direction.

Figure 5 illustrates the normalized stress intensity factors~nor-
malized by m0(w0/2h)Apa! versus time for Heaviside ste
function loading considering the following viscoelastic mater
models: standard linear solid~see ~39! and ~44!!, power law
material ~see ~39! and ~45!!, and power-law material with
position-dependent relaxation time~see~42! and ~45!!. A finite
thickness strip withh/a52.0 ~Fig. 1! is considered. Note that
for all the models, the stress intensity factors decrease mono
cally with increasing time. The first two models are investiga
for the nonhomogeneous parameterb50, 1, 2 with b50 cor-
responding to the homogeneous material case. Due to the sym
try of stress intensity factor aboutb, the stress intensity facto
for b521, 22 are identical to those forb51, 2, respectively.
Moreover, the stress intensity factor decreases with increa
ubu. The last model is investigated forb52 andd521,0,1 with
d50 corresponding to position-independent relaxation time.
this special case, the stress intensity factor decreases with inc
ing d. This is becauseb1qd is positive for theb and d values
considered.

Figure 6 illustrates the normalized stress intensity factors~nor-
malized bym0(w0/2h)Apa! versus time for exponentially decay
ing loading considering the following models: standard line
solid ~see~39! and~40!!, power-law material~see~39! and~41!!,
and power-law material with position-dependent relaxation ti
~see~42! and ~41!!. The same qualitative observations for Fig.
also hold for Fig. 6.
. 68, MARCH 2001
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Figure 7 presents the normalized stress intensity factors~nor-
malized bym0(w0/2h)Apa! versus time for exponentially rising
loading for the standard linear solid~see~39! and~40!!. Compar-
ing this figure with Figs. 5~a! and 6~a! ~Heaviside step function
loading and exponentially decaying loading!, one observes tha
the time variation of stress intensity factors show a convex sh
in Fig. 7 while it shows a monotonically decreasing trend in Fi
5~a! and 6~a!.

Figure 8 shows crack profiles for the Heaviside step funct
loading considering the standard linear solid and the power
material with position-dependent relaxation time~see~46!, ~47!,
and ~49!!. A finite thickness strip geometry withh/a52 ~Fig. 1!
is considered. The former model~Fig. 8~a!! is investigated for the
nonhomogeneity parameterb50, 1, 2 withb50 corresponding to
the homogeneous material case. The latter model~Fig. 8~b!! is
investigated forb52 andd521, 0, 1 withd50 corresponding to
position-independent relaxation time.

Figure 9 shows crack profiles for the exponentially decay
loading considering the standard linear solid and the power-
material with position-dependent relaxation time~see~46!, ~47!,
and ~49!!. As before, a finite thickness strip geometry withh/a
52 ~Fig. 1! is considered. The former model~Fig. 9~a!! is inves-
tigated for the nonhomogeneity parameterb52 andt/t051, 2, 3.
The latter model~Fig. 9~b!! is investigated forb52, d51, and
t/t051, 2, 3. A comparison of all the plots in Figs. 8 and
permits to evaluate the corresponding crack profiles for vari
material models and various parameters. This information is
tentially valuable when correlated with fracture experiments, e
crack-sliding displacement measurements.
Transactions of the ASME
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11 Concluding Remarks and Extensions
This paper illustrates an application of Paulino and Jin’s@23#

revisited correspondence principle to fracture mechanics of
coelastic functionally graded materials. An effective integ
equation method for antiplane shear cracking in viscoelastic fu
tionally graded materials is presented. The elastic function
graded material crack problem is solved and the correspond
principle between the elastic and the Laplace transformed
coelastic equations is used to obtain stress intensity factors
viscoelastic functionally graded materials. Formulas for stress

Fig. 5 Normalized Mode III stress intensity factor versus time:
Heaviside step function loading, „a… standard linear solid; „b…
power-law material; „c… power-law material with position-
dependent relaxation time
Journal of Applied Mechanics
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nce
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tensity factors and crack displacement profiles are provided. S
eral numerical results for these quantities are presented cons
ing various viscoelastic material models~e.g., standard linear
solid, power-law model with both position-independent a
position-dependent relaxation time! and loading conditions. It is
important to remark that the solution of the fracture mechan
problem with prescribed displacement~see Fig. 1! is different
from the solution with prescribed traction~cf. Erdogan@15,20#!.

Fig. 6 Normalized mode III stress intensity factor versus time:
exponentially decaying loading, „a… standard linear solid; „b…
power-law material; „c… power-law material with position-
dependent relaxation time
MARCH 2001, Vol. 68 Õ 291
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This work offers promising avenues for further extensio
For instance, it may be used to calibrate numerical methods~e.g.,
finite element method and boundary element method! for vis-
coelastic functionally graded materials. Moreover, the discuss
on relaxation functions of separable forms in space and time~Sec-
tion 5! indicates the need for micromechanics models for v
coelastic behavior. Other relevant topics associated with
work also deserve further investigation. Such topics include:~a!
investigation of antiplane shear cracking in bonded viscoela
layers where one of the layers is a functionally graded mate
~b! extension of the antiplane shear crack model to Mode I cra
These topics are presently being pursued by the authors.

Fig. 7 Normalized Mode III stress intensity factor versus time:
exponentially rising loading „standard linear solid …

Fig. 8 Crack face displacements: Heaviside step function
loading, „a… standard linear solid; „b… power-law material with
position-dependent relaxation time
292 Õ Vol. 68, MARCH 2001
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Appendix
In the following, a relatively detailed derivation of integral E

~28! is given, which refers to the Mode III fracture mechani
problem illustrated by Fig. 1. By using Fourier transform, t
solution of the basic Eq.~27! can be expressed as follows:

w5
1

A2p
E

2`

` H A1 expF2b1m

2

y

hG1A2 expF2b2m

2

y

hG J
3exp~2 ixj!dj, y.0,

w5
1

A2p
E

2`

` H B1 expF2b1m

2

y

hG1B2 expF2b2m

2

y

hG J
3exp~2 ixj!dj, y,0, (56)

whereA1 , A2 , B1 , andB2 are unknowns, andm is

m[m~j!5Ab214h2j2. (57)

The stressty is obtained from~56! by Hooke’s law,

Fig. 9 Crack face displacements: exponentially decaying load-
ing, „a… standard linear solid; „b… power-law material with
position-dependent relaxation time
Transactions of the ASME



-

h

els

ed
ids,

d

for

al
m-

J.

stic
ct.,

us

ity
i.

at-

s,’’

epts

al
ri-

,’’
,

ic
ct.,

ate-

d-
ge-

on

las-

el
ded

of

-

ty5m0 exp~by /h!
]w

]y

5
m0 exp~by /h!

A2p
E

2`

` H 2b1m

2h
A1 expF2b1m

2

y

hG
1

2b2m

2h
A2 expF2b2m

2

y

hG J exp~2 ixj!dj, y.0,

ty5m0 exp~by /h!
]w

]y

5
m0 exp~by /h!

A2p
E

2`

` H 2b1m

2h
B1 expF2b1m

2

y

hG
1

2b2m

2h
B2 expF2b2m

2

y

hG J exp~2 ixj!dj, y,0.

(58)

By using the boundary conditions~23! to ~26!, the unknownsA2 ,
B1 , andB2 can be expressed byA1 which is given by

A15
1

i j H 12exp~m!2@12exp~2m!#

3
2b1m1~b1m!exp~m!

2b1m1~b1m!exp~2m!J
3

1

A2p
E

2a

a

w~x8!exp~ ix8j!dx8, (59)

wherew(x) is the density function defined by

w~x!5
]

]x
@w~x,01!2w~x,02!#. (60)

Further, the stressty at y50 is expressed byw(x) as

tyuy505
m0

2p E
2a

a F 1

x82x
1k~x,x8,b!Gw~x8!dx8 (61)

wherek(x,x8,b) is given in ~31!. By substituting the above ex
pression into the boundary condition~24!, the integral Eq.~28! is
deduced.
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Rupture of Thin Power-Law Liquid
Film on a Cylinder
The dynamic rupture process of a thin power-law type non-Newtonian liquid film o
cylinder has been analyzed by investigating the stability to finite amplitude disturba
The dynamics of the liquid film is formulated using the balance equations includi
body force term due to van der Waals attractions. The governing equation for the
thickness was solved by finite difference method as part of an initial value problem
spatial periodic boundary conditions. A decrease in the cylinder radius will induc
stronger lateral capillary force and thus will accelerate the rupture process. The influe
of the power-law exponent on rupture is discussed.@DOI: 10.1115/1.1355033#
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Introduction
Study of the rupture of thin liquid films has been motivated

the industrial applications in many disperse and colloid system
chemical, mechanical and biomedical engineering fields. Whe
liquid layer becomes ultra thin~100–1000 Å!, it becomes un-
stable. The instability is due to the van der Waals potential
results in the rupture of the layer. Ruckenstein and Jain@1# studied
the spontaneous rupture of a liquid film on a planar solid w
The liquid film was modeled by them as a Navier-Stokes c
tinuum with a potential due to the van der Waals interactio
They used lubrication approximation to obtain the linear dynam
instability results. From this analysis, one can obtain rough e
mates for the rupture time, namely, the time needed for the
film to attain zero thickness at some point. William and Davis@2#
examined the nonlinear evolution equation and numeric
treated it as an initial value problem with periodic boundary co
ditions. Their results indicated that the nonlinearities of the sys
would accelerate the rupture phenomenon.

Cheng and Chang@3# considered the stability of thin liquid film
on a cylindrical surface. Brochard@4# discussed the spreading o
liquids on thin cylinders and found that for volatile liquids, th
vapor would adhere to the cylinders and showed two differ
ways to prevent the Rayleigh instability from developing on fib
coated with a liquid film.

All the previous studies were concerned with Newtonian flui
There exist relatively few studies concerning the non-Newton
fluids, which are important in connection with plastics manufa
turing, lubricant performance, applications of paints and mo
ment of biological fluids. Non-Newtonian fluids generally exhib
a nonlinear relationship between shear stress and shear rate.
fluids may be classified as inelastic and viscoelastic. The inela
fluids may be subdivided as time-dependent fluids and in tim
independent fluids. The time-dependent fluids, in turn, are su
vided into two groups: thixotropic and rheopectic. The tim
independent fluids can be subdivided into four groups:~1!
pseudoplastic,~2! dilatant behavior,~3! Bingham plastic, and~4!
pseudoplastic with yield stress. Inelastic time-independent n
Newtonian fluids have received the greatest attention from rhe
gists which has resulted in the development of a number of eq
tions or models proposed to represent their flow behavior.
Ostwald-de Waele power-law model represents several inela
time-independent non-Newtonian fluids of practical interest a

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ma
7, 1999; final revision, Nov. 2, 2000. Associate Editor: J. T. Jenkins. Discussio
the paper should be addressed to the Editor, Professor Lewis T. Wheeler, Depa
of Mechanical Engineering, University of Houston, Houston, TX 77204-4792,
will be accepted until four months after final publication of the paper itself in
ASME JOURNAL OF APPLIED MECHANICS.
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therefore has been used in this paper. Whenn,1, the model
describes pseudoplastic behavior whereasn.1 represents dilatan
behavior. More details on the classifications of non-Newton
fluids may be found in Skelland@5#. Sathyagal@6# used a linear-
ized analysis to predict the critical thickness of rupture for
power-law liquid film. Hwang and Chang@7# investigated the
nonlinear aspects of the problem.

In practical applications, there are many superslender cylind
such as optical fibers with radii less than 10mm. If the thickness
of a liquid coating film is ultrathin~100–1000 Å!, then the van der
Waals potential may affect obviously the stability of this film flo
system. A review of the literature indicated that no one until n
has addressed the question of how the thin power-law type n
Newtonian liquid film on a cylinder ruptures in the presence
van der Waals forces. The present work has been undertake
order to investigate this problem. We are interested in the spe
working regimes of the parameters, where it will be possible
predict rupture or dry out of the thin film. This will be accom
plished by solving the equations of thin film motion. A long wav
theory is formulated for the nonlinear dynamic instabilities of t
thin film. Examples of power-law fluids that might be of intere
in the thin film applications are polymers, lubricants, paints, a
biological fluids.

Analysis
We consider the flow of a thin liquid film along a horizont

cylinder. We choosex andy directions to be parallel and norma
to the cylinder, respectively, as shown in Fig. 1. We assume
characteristic thickness of the film to beh0 and the length scale
parallel to the film to beL. The aspect ratio is given byj
5h0 /L. If we assume thatj!1, we have a thin film. Assuming
that the liquid is a power-law fluid, we may write

t i j 5muġ i j un21ġ i j (1)

wheret i j is the stress tensor,ġ i j is the rate of strain tensor,n is
the power-law exponent, andm is the viscosity index. We now
use the following length scales:

time: @h0~rh0
n/m!1/~n22!#

length: @h0#

velocity ~U0!: @~rh0
n/m!1/~n22!#

pressure and stress:@r~rh0
n/m!2/~n22!#.

The liquid layer is assumed thin enough that van der Wa
forces are effective~,'0.1 mm! and thick enough that a con
tinuum theory of the liquid is applicable. The dimensionless co
servation equations of mass, momentum and angular momen
equations are given by
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]u

]x
1S 1

a1yD ]~a1y!v
]y

50 (2)

]u

]t
1u

]u

]x
1v

]u

]y
52

]p

]x
2

]c

]x
1

1

~a1y!

]F ~a1y!S ]u

]yD nG
]y

(3)

052
]p

]y
. (4)

In the above dimensionless equations,u and v represent the
velocity components inx andy directions, respectively,p the pres-
sure andc the potential function describing the van der Waa
forces. We follow Williams and Davis@2# and write a modified
expression forc :

c5Ah23. (5)

In the previous equation, the van der Waals forces are represe
through the potential functionC and A8 is the dimensional Ha-
maker constant.A is related to the Hamaker constantA8 as

A5
A8

6prh0
3D

where D5r~rh0
n/m!2/~n22!. (6)

The boundary conditions along the solid plane wall are given

y50: u5v50. (7)

At the fluid interface, we have the kinematic condition:

y5h~x,t !:
]h

]t
1u

]h

]x
5v. (8)

The continuity of tangential stress on the interface requires

y5h~x,t !:
]u

]y
50. (9)

The continuity of normal stress at the interfacey5h(x,t) be-
comes

Fig. 1 Flow model for the thin film flow
Journal of Applied Mechanics
ls

nted

by

2F S S ]h

]xD 2 ]u

]x
1

]v
]y D2S ]u

]y
1

]v
]xD ]h

]x G
F11S ]h

]xD 2G

52

3SF ]2h

]x22

S 11S ]h

]xD 2D
~a1y!

G
F11S ]h

]xD 2G3/2 2p (10)

where

S5s/3h0D (11)

dimensionless surface tension. Our aim here is to solve for
stability of the liquid film while including the effect of van de
Waals forces.

We now apply the long-wave theory to study the stabil
problem. When the layer is thinner than a critical value, sm
disturbances begin to grow. These waves have wavelengths m
larger than the mean thickness of the layer. Defining a sm
parameterk that is related to wave number of such disturbanc
we may rescale the governing equations by order of magnit
considerations:

X5kx; Y5y; t5k4t; C05k22c

U5k23u; V5k24v; P5k22p. (12)

We assume that]/]X,]/]Y,]/]t5O(1) ask→0. Given thatU
5O(1), Eq. ~3! indicates thatV5O(k). We now let p, c0
5O(1/k) ask→0.

We now assume the following expansions for the flow field

U5U01k2U11 . . .

V5V01k2V11 . . .

P5P01k2P11 . . . (13)

C05k22c.

The governing equations and the corresponding boundary
ditions for the zeroth-order problem may be written as

]U0

]X
1

]V0

]Y
50 (14)

nS ]U0

]Y D n21 ]2U0

]Y2 5
]P0

]X
1

]C0

]X
(15)

]P0

]Y
50. (16)

The boundary conditions are given by

Y50: U05V050 (17)

Y5h:
]U0

]Y
50

P0523S
]2h

]X22
3S~a2h!

a2

]h

]t
1U0

]h

]X
5V0 . (18)

The solutions for the velocity field are given by

U05F n

~n11!

]P08

]X

1/nG$2~h2Y!~n11!/n1h~n11!/n% (19)
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where

P0852~P01c0!. (21)

P05S 23S
]2h

]X2 2
3S~a2h!

a2 D (22)

Similarly, expressionsul , n l , and pl may be derived. These
expressions are not used in the computations and they are
long. Therefore, they are not reproduced here. Using equat
~14!–~22! we may show that the leading order evolution equat
for the film rupture is given by

]h

]t
1H 3S

]3h

]X3 13Sa221
3A

h4

]h

]XJ 1/n

h~n11!/n
]h

]X

52
1

~2n11! S 3S
]3h

]X3 13Sa221
3A

h4

]h

]XD ~12n!/n

3S 3S
]4h

]X4 13Sa2213A
]

]X S 1

h4

]h

]XD Dh~2n11!/n (23)

subject to initial conditions

h~X,0!5 f ~X!. (24)

Equation~23! governs long wave interfacial disturbances to t
static film ~havingh51! subject to van der Waals attractions.

Results and Discussion
The nonlinear partial differential Eq.~23! was solved numeri-

cally using the finite difference method. Central differences w
used for space variable and the midpoint rule was used for ti
The Newton-Raphson method was used to solved the resu
system of difference equations. The problem was treated a
initial value problem with spatial periodic boundary conditio
within the interval 0,X,2p/qm .

In order to obtain a solution independent of the grid size, s
eral computational runs were performed to obtain the optim
step sizes inX andt directions. The optimization procedure of th
grid size includes computing the spatial film thickness distribut
at an arbitrary time, employing a given number of grid points
spatial direction. After that the number of grid points is increas
gradually, each time, a computer run was performed to comp
the film thickness profile. A residue is defined as the abso
difference in film thickness between the two runs. The proced
is continued until the residue approaches a value less tha
31024. At this point the spatial grid size is fixed. A simila
procedure was followed to choose the optimum time step. Ba
on these calculations, we used spatial grid pointsN550 and time
stepsDt50.01 in all the computations. The initial condition wa
given by

h~X,0!511H0 sin~qmX!, 0<X<2p/qm . (25)

The following parameters were used in the numerical calculati
to describe both pseudoplastic and dilatant materials:

H050.1,0.25; a580,100,150; n52,1,0.9,0.75,0.5;

A50.001,0.002,0.003;S51,2,3.
296 Õ Vol. 68, MARCH 2001
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Figure 2 shows the initial disturbance introduced and the fi
profile at the time of film rupture. It may be noted that the fil
thickness is zero at rupture and negative thickness has no phy
meaning. Figure 3 shows that the rupture time increases with
inder radius.

Figure 4 displays the timewise variation of minimum film
thickness. We observe that the rupture time for the Newton

Fig. 2 Film thickness distribution at the rupture time

Fig. 3 Rupture time versus cylinder radius
Transactions of the ASME
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fluid (n51) is smaller than that for the dilatant fluids (n.1) but
greater than the corresponding value for the pseudoplastic fl
(n,1). As n increases, the rupture time increases.

Figure 5 shows the variation of the rupture time versusA. The
rupture time decreases asA increases or the van der Waals pote
tial increases. Asn increases, the rupture time increases.

Figure 6 shows that as the surface tension increases, the ru
time increases. The strong lateral capillary force induces an ac

Fig. 4 Minimum film thickness versus time

Fig. 5 Rupture time versus A
Journal of Applied Mechanics
ids

n-

ture
cel-

eration effect on the rupture process as the magnitude of the
face tension parameter,S increases. Asn increases, the rupture
time increases.

Concluding Remarks
In this paper, we have formulated a long-wave theory for

nonlinear dynamic instabilities of a thin power-law type no
Newtonian liquid film on a cylinder. Numerical solutions are o
tained for the simplified form of the equations governing the d
namics of the liquid film. As the radius of the cylinder increas
the rupture time increases. The rupture time increases with sur
tension parameter and decreases with increasing van der W
force potential. The rupture times for the dilatant fluids (n.1) are
higher than that of Newtonian fluid where as pseudoplastic flu
(n,1) are associated with smaller rupture times. Therefore, n
Newtonian fluids find an important application where it may
desirable to maintain the stability of thin films over longer
shorter periods of time when compared to Newtonian fluids.
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Thermal Deformation of Initially
Curved Substrates Coated by Thin
Inhomogeneous Layers
Thermal curvature changes and membrane strains are analyzed for elastic shallow
substrates which are coated by thin, generally inelastic, inhomogeneous and aniso
layers. The analysis is restricted to linear kinematics. It is shown that the deformati
governed by the corresponding solution for a flat substrate and a correction due to
initial curvature. The correction is determined from a shallow shell problem for the b
substrate with a loading expressed by the coefficients of thermal curvature fo
substrate/layer system. For constant initial curvatures, certain analytic solutions are
sented. For situations when the initial deflection of the substrate is much larger tha
substrate thickness, a boundary layer solution is derived. In the particular case
circular isotropic substrate with a spherical initial curvature and a coating of arbitra
anisotropy, the solution is presented in closed form. For nonflat substrates, mea
curvatures can generally not be used to extract layer stresses without a proper com
sation for the initial curvature. In the paper, it is explicitly presented how to accura
compensate for a spherical initial curvature. The results are particularly discusse
relation to curvature measurements on Silicon substrates.@DOI: 10.1115/1.1357169#
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1 Introduction
Many engineering applications employ initially curved she

which are coated by thin, generally inhomogeneous and an
tropic layers. Most common examples include thermal-barrie
wear-resistant coatings and organic paints deposited on cu
surfaces. In addition, nominally flat substrates, such as Si wa
used to fabricate microelectronic chips, may in fact exhibit no
negligible initial curvatures in response to some processing
manufacturing steps. The subsequent deposition of metal inter
nects and passivating material then builds up a shallow shell
a thin coating which belongs to the class of problems that
investigated in the present paper. While there exists consider
information on the mechanics of flat substrates, the deformatio
initially curved substrates with anisotropic layers appears to
relatively unexplored.

In the present paper, the attention is directed towards anal
within the context of small deformations of elastic shallow sh
substrates coated with thin anisotropic and possibly inelastic
ers. First it is shown that the analysis can be reduced to a prob
which only involves the initially curved substrate without coati
with a loading in terms of the thermal curvature coefficients of
substrate/coating system. All information about the thin layer s
as elastic, plastic, and creep behavior are then contained w
the coefficients of thermal curvatures. For constant initial cur
tures, closed-form solutions are presented for certain param
combinations. Since one of the most common methods use
perform mechanical testing of thin films~Flinn et al. @1#! and
unpassivated lines~Yeo et al.@2#! is to measure curvature chang
during thermal cycling, the implications of performing curvatu
measurements on nonflat substrates under the assumption of
flatness is thoroughly investigated. Specific applications of
results to initial spherical curvatures are addressed.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Divisio
March 8, 2000; final revision, October 19, 2000. Associate Editor: S. Kyriakid
Discussion on the paper should be addressed to the Editor, Professor Lew
Wheeler, Department of Mechanical Engineering, University of Houston, Hous
TX 77204-4792, and will be accepted until four months after final publication of
paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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2 Theoretical Basis
Elastic shallow shell substrates with thin coatings, are mode

within the context of linear kinematics. The substrate/layer sys
is assumed to have free boundaries and it is subjected to a
perature load. Due to thermal expansion mismatch, stresses
curvatures will develop. The constitutive relation for a shallo
shell substrate with a thin layer deposit can be treated as that
homogenized anisotropic plate.

2.1 Shallow Shell Equations. A Cartesian coordinate sys
temxa is introduced. The middle surface of the undeformed sh
is expressed byz52k̃abxaxb/2, wherek̃ab is the initial curva-
ture of the shell and the summation convention is utilized
Greek subscripts which range from 1 to 2. The condition fo
shell to be considered sufficiently shallow isz,az,a!1. As a start-
ing point, the differential equations for an anisotropic linear el
tic shallow shell are considered~Flügge@3# and Leissa et al.@4#!.

The equilibrium equations for vanishing body forces, such
gravity, can be expressed as

Nab,b50 Mab,ab2Nabk̃ab50 (1)

whereNab and Mab denote membrane forces and moments
unit length. The homogenized constitutive law may be written

Nab5Aabgd~«gd2agdT!1Babgd~kgd2bgdT!
(2)

Mab5Babgd~«gd2agdT!1Dabgd~kgd2bgdT!

whereAabgd , Babgd , andDabgd represent stiffness tensors of th
homogenized shell element. The parametersaab andbab denote
the coefficients of thermal expansion and thermal curvature of
homogenized shell element andT a constant temperature chang
The kinematics of the shallow shell are described by

«gd5
1
2 ~ug,d1ud,g!1wk̃gd (3)

kgd52w,gd

where«gd represent in-plane strains,kgd curvatures,ud midsur-
face in-plane displacements, andw the out-of-surface displace
ment. Strain compatibility requires that

eagebd~«gd2wk̃gd! ,ab50 (4)
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whereeab represents the two dimensional permutation tensor
The boundary conditions for a free edge read

Nabnb50, Mabnanb50, Qana1Mnt,t50 (5)

wherena ,ta are normal and tangent directions to the bounda
respectively, andQa5Mab,b is the equivalent transverse she
force. All tensorial quantities in Eqs.~1!–~5! are given in a cur-
vilinear coordinate system defined in Flu¨gge@3# which is specified
by the following transformation:

dûa5dua2z,adw, dŵ5du,az,a1dw (6)

wheredûa anddŵ denote components parallel to the fixed Ca
tesian coordinate system in which the middle surface of the s
is expressed. Note that ifk̃gd vanish, the problem reduces to th
flat-plate problem.

2.2 Thin Layer Approximation. The thermoelastic proper
ties given in Eq.~2! for a substrate with a thin layer deposit can
expanded as a Taylor expansion ind5t/h!1 wheret is the thick-
ness of the thin layer andh the substrate thickness. Only terms u
to first order are considered here. The expanded thermoel
properties can be written in matrix form as

F N01dN1

M01dM1G5FA01dA1 B01dB1

B01dB1 D01dD1G
3S F «01d«1

k01dk1G2TFa01da1

b01db1G D (7)

where A0, B0, D0, a0, b0 are properties for a bare substra
without layer. For a substrate which is homogeneous in the th
ness directionB0, b0 vanish. Hence

«ab
0 5aab

0 T, w05kab
0 5Mab

0 5Nab
0 50 (8)

fulfill the equilibrium Eq.~1! and compatibility for the kinematic
relations stated in Eq.~4! as well as the boundary conditions
Eq. ~5!. It is noted that the solution to the zeroth-order proble
also is the solution to the flat bare substrate problem. Since
zeroth-order solution is a pure in-plane strain, the second-o
stresses and strains that develop in the thin layer as a result
temperature change can be solved as a separate problem
sented by a thin coating on an infinite elastic half-space. By co
puting the volume average stresses in the separate problem
coefficients of thermal curvatureb1 (b050) may be computed
through moment equilibrium~Stoney formula!, see ~Wikström
et al. @5#!

^sab&52
h2

6t
Cabgd

0 byd
1 T (9)

where ^sab& represents volume-averaged stress changes in
layer of thicknesst. The tensorCabgd

0 represents the plane stre
stiffness tensor of the bare substrate, and the middle surfacez is
chosen as the midplane of the substrate. For a flat substrate w
thin coating, the thermal curvature changeskab

1 will equal bab
1 T.

Hence a measurement of curvatures will through Eq.~9! enable
estimates of volume average layer stresses~Flinn et al. @1# and
Yeo et al.@2#!. Therefore, provided that a sufficiently small re
resentative part of the layer can be chosen, the effects of pla
ity, creep, crystal directions and so on may be included inb1.

In order to analyze the first-order problem, the following su
stitutions are made:

«ab
1 5Taab

1 1«ab
c Nab

1 5Nab
c kab

1 5Tbab
P 1kab

c

Mab
1 52T

h3

12
Cabgd

0 ~bgd
1 2bgd

P !1Mab
c (10)

w152
T

2
bab

P xaxb1wc
Journal of Applied Mechanics
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wherebab
P represents a prescribed tensor that is independent oxa

and which at this point may be arbitrarily chosen. For a const
initial curvature, the remaining system of equations that is valid
the interior of the shell becomes

Nab,b
c 50 Mab,ab

c 2Nab
c k̃ab50 (11)

Nab
c 5hCabgd

0 «gd
c Mab

c 5
h3

12
Cabgd

0 kgd
c (12)

eagebdS «gd,ab
c 2S wc2

T

2
buw

P xu xwD
,ab

k̃gdD 50 (13)

kab
c 52w,ab

c (14)

and the boundary conditions can be expressed as

Nab
c nb50

Qa
c na1Mnt,t

c 5T
h3

12
Cabgd

0 ~natb! ,wtw~bgd
1 2bgd

P ! (15)

nanbMab
c 5T

h3

12
Cabgd

0 nanb~bgd
1 2bgd

P !.

Three observations~that would be valid also for a varying initia
curvature! can now be made:~a! It is sufficient to consider the
stiffness matrix of the bare substrate only.~b! Regardless of how
bab

P is chosen, the coefficients of thermal curvature will repres
an inhomogeneous term somewhere in Eqs.~11!–~15! and since
the system is linear, the solution will be linear in the inhomog
neous term.~c! The membrane and bending state decouple
zero initial curvatures~flat-plate problem! and as will be shown
subsequently also for very large initial curvatures~a large initial
curvature within the shallow shell theory correspond to initial o
of-plane deflections which are much larger than the shell thi
ness as well as much smaller than in-plane dimensions!.

First, letbab
P 5bab

1 , this means thatwc represents a correction
to the flat-plate solution. The boundary conditions become hom
geneous and the inhomogeneous term appears in the interio
scription of the plate~Eq. ~13!!. A physical interpretation of the
correction can be made. It is seen that if a constantC is chosen as
C5(baa

1 k̃bb2bab
1 k̃ab), the following equality holds:

eagebdk̃gd~buw
1 xoxuxw/2! ,ab5eagebd~Cxw xwdgd/4! ,ab .

(16)

Hence, the inhomogeneous term in Eq.~13! may be transferred to
Eq. ~12! by the substitution«gd

c 5«gd
d 2TCxaxadgd/4. The correc-

tion problem~save for the resulting strain! is therefore equivalent
to a radially symmetric temperature distribution around some
bitrarily chosen origin with a constant isotropic coefficient of the
mal expansion which is proportional toC. This analogy makes it
very easy to solve the general anisotropic problem with comm
cially available finite element codes. As a special case it is
served thatwc50 and«ab

c 50 represent the exact solution whe

eagebdS 2
T

2
buw

1 xu xwD
,ab

k̃gd5T~baa
1 k̃bb2bab

1 k̃ab!50.

(17)

As an example of this situation one could consider an ini
cylindrical shape~k̃11Þ0, k̃225k̃1250! and a thin layer consist-
ing of a periodic pattern of unpassivated parallel lines with
geometry such that~b11

1 Þ0, b22
1 5b12

1 50!. This situation can
arise if the lines are oriented along thex1-direction and their
cross-sectional shape is chosen appropriately, see Wikstro¨m et al.
@5#.

Secondly, bab
P may be chosen such that the deflectionw

52Tbab
P xaxb/2 fully represents the behavior in the interior o

the shell for large initial curvatures. The inhomogeneous te
MARCH 2001, Vol. 68 Õ 299
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then only appears in the boundary conditions. In this case,wc and
«ab

c represent a boundary layer correction to the solution for v
large curvatures. This boundary layer solution is presented
closed form in the Appendix. However, first the proper choice
bab

P must be determined. For a given initial curvature, two co
stant nonzero linearly independent solutionskab

C1 and kab
C2 can

always be chosen such that they fulfill the compatibility equat
~cf. Eq. ~17!!:

kaa
C1,C2k̃bb2kab

C1,C2k̃ab50. (18)

They can be used to represent the solution that is valid in the in
part of the shell. Once the solutions have been chosen, they ca
ortho-normalized such that

h3

12
kab

C1Cabgd
0 kgd

C151
h3

12
kab

C2Cabgd
0 kgd

C251 kab
C1Cabgd

0 kgd
C250.

(19)

The most general compatible curvatures that fulfill Eq.~18!
may then be expressed as

kab
` 5T~D1kab

C11D2kab
C2!. (20)

In order to determineD1 andD2 , the potential energy is con
sidered. For large initial curvatures, the contribution from t
boundary layer can be neglected. The potential energy may
be written as

U5
1

2 ES

h3

12
kab

` Cabgd
0 ~kgd

` 2bgd
1 T!dS (21)

whereS denotes the arbitrarily shaped shallow midsurface of
shell. Minimizing the potential energy with respect toD1 andD2
yields

D15
h3

12
kab

C1Cabgd
0 bgd

1 D25
h3

12
kab

C2Cabgd
0 bgd

1 . (22)

Thus, in order to divide the solution into an interior part and
boundary layer, the prescribed coefficient of thermal curvat
should be chosen as

bab
P 5D1kab

C11D2kab
C2. (23)

The complementary boundary layer solution is presented in
Appendix for the case of an anisotropic shell of arbitrary in-pla
shape and large initial curvature.

The total solution can be assembled as a sum of solutions to
problem of zeroth and first-order, respectively. The error in t
approximation is of orderO(d2). Observe that so far, no restric
tion is placed on the type of layer used or the shape of
boundary.

2.3 Substrates with Spherical Initial Curvature. An iso-
tropic spherical cap coated by a thin, possibly inelastic, an
tropic layer is now considered. The aim is to determine how
initially curved, stress-free substrate with free boundaries reac
temperature changes in comparison to an initially flat substr
The dimensions of the shell are defined in Fig. 1. The solution
the problem of order zero is given by Eq.~8!. The objective is
therefore to find a solution to the first-order problem defined
Eqs.~10!–~15!.

The initial curvature of a spherical cap can be expressed a

k̃ab5k̃dab52
z0

a2 dab (24)

wheredab is the Kronecker delta. The previously introduced te
sor bab

P is chosen according to one of the two limiting cas
discussed in Section 2.2. The prescribed coefficient of ther
expansion for the two alternatives can be worked out as
300 Õ Vol. 68, MARCH 2001
ry
in

of
n-

on

ner
n be

he
hen

he

a
re

the
ne

the
is

-
the

so-
an
s to
te.
to

by

n-
es

al

bab
P 5bab

1 ~zero initial curvature!
(25)

bab
P 5bab

1 2
1
2bgg

1 dab ~very large initial curvature!.

The difference between the two alternatives is just a radially sy
metric term that may be added or subtracted afterwards.
choice is arbitrary, howeverbab

P 5bab
1 is selected here since

correction to the flat plate solution may have more physical s
nificance. The boundaries are free and the only inhomogene
term appears in Eq.~13! and it reduces to

T~baa
1 k̃bb2bab

1 k̃ab!5Tk̃baa
1 . (26)

It is observed that even if arbitrary coefficients of thermal curv
ture are permitted, the correction problem exhibits radial symm
try sincebaa

1 is constant and invariant during a change of co
dinates. The angular dependence of the solution to this first-o
problem is thus entirely contained within the prescribed part of
solution. This makes it possible to find a closed-form solution
the problem.

A stress function is introduced such that

Nab
c 5eagebdF ,gd

c . (27)

For a constant temperature change, the first-order problem g
by Eqs.~11!–~14! may for an isotropic substrate be reduced to

¹2¹2Fc2k̃Eh¹2wc52k̃EhTbaa
1 ,

(28)
Eh3¹2¹2wc1c4k̃¹2Fc50

with boundary conditions expressed in polar coordinates

wc~0!5Nr
c~a!5Mr

c~a!50 Mr
c~0!,Nr

c~0! finite (29)

where¹2 is the Laplace operator and the constantc is defined as

c25A12~12n2! (30)

and whereE andn represent Young’s modulus and Poisson’s ra
of the bare substrate. Due to the radial symmetry, the Lap
operator reduces to

¹25
d2

dr2 1
1

r

d

dr
(31)

and radial moments and membrane forces per unit length bec

Mr
c52

Eh3

c4 S d2wc

dr2 1n
1

r

dwc

dr D , Nr
c5

1

r

dFc

dr
. (32)

It can be shown that with radial symmetry and zero exter
loads, the following conditions are automatically satisfied:

Fig. 1 Geometry of a substrate with spherical initial curvature.
The curvilinear coordinate system is indicated.
Transactions of the ASME
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0

5Qr
c~a!5Nrw

c ~a!5Mrw
c ~a!50. (33)

It should be noted that in contradiction to Leissa et al.@4#,
Reissner@6# includes a termak̃Nr

c(a) in Qr
c(a), this term does

not matter here becauseNr
c(a)50. Following the work of Reiss-

ner @6–8# the total solution to Eqs.~28!–~29! subject to the con-
tinuity requirement and displacement condition at the center m
be expressed as

wc5
1
2a2Tbaa

1 f̄ ~ r̄ !, Fc5
1
2Eh2a2Tbaa

1 s̄~ r̄ ! (34)

wherer̄ 5r /a. The dimensionless functionsf̄ ( r̄ ) ands̄( r̄ ) may be
expressed in terms of the Kelvin functions bern(x) and bein(x) as

f̄ ~ r̄ !5C1~ber0~z r̄ !21!1C2 bei0~z r̄ !1
1
2r̄ 2

(35)

s̄~ r̄ !5
1

c2 ~C1 bei0~z r̄ !2C2 ber0~z r̄ !!

where the dimensionless parameterz is defined as

z5cAa2k̃

h
5cA2S z0

h D . (36)

Applying the boundary conditions given by Eq.~29!, the con-
stantsC1 andC2 can be determined as

C15
&~11n!

zl
$ber1~z!1bei1~z!%

C25
2&~11n!

zl
$ber1~z!2bei1~z!% (37)

l52~12n!$ber1
2~z!1bei1

2~z!%1&z$ber0~z!~ber1~z!2bei1~z!!

1bei0~z!~ber1~z!1bei1~z!!%.

Thus f̄ ( r̄ ), s̄( r̄ ) depend only onr̄ , z0 /h andn. In order to com-
pute curvatures and forces per unit length, the following dim
sionless functions are introduced:

h̄1~ r̄ !52
1

r̄

d f̄

dr̄
52

&

2

z

r̄
$~C12C2!ber1~z r̄ !

1~C11C2!bei1~z r̄ !%21

h̄2~ r̄ !52
d2 f̄

d r̄2 5c2z2s̄~ r̄ !2h̄1~ r̄ !22
(38)

h̄3~ r̄ !5
1

r̄

ds̄

dr̄
52

1

c2

&

2

z

r̄
$~C11C2!ber1~z r̄ !

2~C12C2!bei1~z r̄ !%

h̄4~ r̄ !5
d2s̄

dr̄2 5
z2

c2 $C1 ber0~z r̄ !1C2 bei0~z r̄ !%2h̄3~ r̄ !.

For zero initial curvature, all functions in Eq.~38! vanish and
for large initial curvaturesh̄1( r̄ ) and h̄2( r̄ ) tends to21 while
h̄3( r̄ ) and h̄4( r̄ ) again tends to zero for 0< r̄ ,1. The curvatures
and normal forces that solves the correction problem can the
expressed as

F k r
c

kw
c

2k rw
c
G5

1

2
Tbaa

1 F h̄2~ r̄ !

h̄1~ r̄ !

0
G , F Nr

c

Nw
c

Nrw
c
G5

1

2
Eh2Tbaa

1 F h̄3~ r̄ !

h̄4~ r̄ !

0
G .

(39)

The total solution to the zeroth and first-order problem can n
be assembled. The total deflection and stress function can be
pressed in Cartesian coordinates as
Journal of Applied Mechanics
ay
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w52
a2T

2
$babx̄ax̄b2baa f̄ ~ r̄ !%1O~d2!

(40)

F5
Eh2a2T

2
baas̄~ r̄ !1O~d2!

where r̄ 25 x̄1
21 x̄2

2. In Cartesian coordinates the total curvatur
become

F k11

k22

2k12

G5
1

2
TF 2b111baa$x̄1

2h̄2~ r̄ !1 x̄2
2h̄1~ r̄ !%/ r̄ 2

2b221baa$x̄2
2h̄2~ r̄ !1 x̄1

2h̄1~ r̄ !%/ r̄ 2

4b1212baax̄1x̄2$h̄2~ r̄ !2h̄1~ r̄ !%/ r̄ 2
G1O~d2!

(41)

whereas the total normal forces per unit length read

FN11

N22

N12

G5
1

2
Eh2Tbaa

1

r̄ 2 F x̄1
2h̄3~ r̄ !1 x̄2

2h̄4~ r̄ !

x̄2
2h̄3~ r̄ !1 x̄1

2h̄4~ r̄ !

x̄1x̄2$h̄3~ r̄ !2h̄4~ r̄ !%
G1O~d2!.

(42)

The total moment per unit length can be computed with
isotropic form of Eqs.~10!, ~12!, and ~41! whereas the total in-
plane strain up to order one can be computed by using Eqs.~10!,
~12!, and~42!. For the in-plane strains, however, the term of ord
zero does not vanish as it does for the other quantities and it
be considered much larger than the terms of order one. The
middle surface strain can therefore approximately be written
«ab5Tadab1O(d) wherea is the coefficient of thermal expan
sion of the substrate.

The effect of initial curvature and position on the dimensionle
displacement correction is presented in Fig. 2. For largez0 /h, the
total solution given by Eq.~40! thus implies that, for an isotropic
film, the initial out-of-plane shape of the shell will remain un
changed. Figures 3 and 4 show the effect of initial curvature
the radial (h̄2( r̄ )) and circumferential (h̄1( r̄ )) dimensionless flat-
plate curvature correction. It is seen that for very small init
curvatures, all corrections vanish as anticipated. Equation~41! and
Figs. 3–4 show further that the correctionsh̄2( r̄ ) andh̄1( r̄ ) are of
significance when the initial out-of-plane distancez0 /h is of the
order of one half or larger. For largez0 /h a boundary layer with
dimensionless length of orderO(Ah/z0) develops, see the Appen
dix.

2.4 Extraction of Average Layer Stresses From Curvature
Measurements The theory presented in Sections 2.1–2.3 d
fines implicit relationships between curvature changes (kab) and
thermal curvature coefficientsbab which through Eq.~9! are di-
rectly connected to average layer stresses^sab&. Here, explicit

Fig. 2 The dimensionless displacement correction f̄
Ä2w c Õ„a2Tbaa

1
… as a function of dimensionless radius r Õa for

z0 ÕhÄ0, 0.25, 0.5, 0.75, 1, 2, 3, 4, 5, 10, 100 and nÄ0.262
MARCH 2001, Vol. 68 Õ 301
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results will be presented for an isotropic substrate with spher
initial curvature ~cf. Eq. ~41!!. It is assumed that the principa
directions ofbab coincide with the 1,2-directions, thusb1250.
The curvature measurement technique relies on evenly sp
measurements of the slope of the substrate along some ra
before and after a temperature change has been applied.
slopes are then subtracted pointwise~therefore the effect of any
initial curvature vanishes! and a straight line is fitted by the lea
squares method. The slope of the fitted line with respect to
radius is then proportional to the curvature change of the s
strate. As long as the substrate is initially flat, the curvature w
theoretically be constant over the radius. However, if the subst
is initially curved, the curvature obtained by this method is av
aged in a sense and it will not coincide with the flat plate cur
ture Tbab . It is therefore of interest to find a way to extra
accurate volume-averaged stresses from curvature measure
on initially curved substrates. Suppose that the slopes (]w/]xa)
along the two radial linesxa are measured on evenly spac
points between2s<xa<s where s<a. The pointwise error
along the principal directions can then be expressed as

ea~ x̄a!5
1

a

dw~ x̄a!

dx̄a
2Ba1aka

LSx̄a ~no sum overa!

(43)

whereka
LS represents the unknown averaged principal curvatu

The continuous form of the least squares problem is to minim
the following mean square errors with respect toBa andka

LS :

Fig. 3 The dimensionless radial curvature correction h̄ 2

Ä2k r
c Õ„Tbaa

1
… as a function of dimensionless radius r Õa for

z0 ÕhÄ0, 0.25, 0.5, 0.75, 1, 2, 3, 4, 5, 10, 100 and nÄ0.262

Fig. 4 The dimensionless tangential curvature correction h̄ 1

Ä2kw
c Õ„Tbaa

1
… as a function of dimensionless radius r Õa for

z0 ÕhÄ0, 0.25, 0.5, 0.75, 1, 2, 3, 4, 5, 10, 100 and nÄ0.262
302 Õ Vol. 68, MARCH 2001
ical
l

ced
dius
The

t
the
ub-
ill

rate
r-
a-
t
ents

d

re.
ize

iea~ x̄a!i5
1

2h E
2h

h

ea~ x̄a!2dx̄a ~no sum overa! (44)

whereh5s/a. The fitted curvature can then be expressed as

ka
LS52

3

2

1

a2h3 E
2h

h

x̄a

dw~ x̄a!

dx̄a
dx̄a ~no sum overa!.

(45)

Replacing the measured slopes with the theoretically obtai
ones and solving the linear system gives

b11T5
1

ḡ~h,z0 /h,n!

~k1
LS1k2

LS!

2
1

~k1
LS2k2

LS!

2
(46)

whereb22 is obtained by interchanging the subscripts 1 and 2. T
function ḡ(h,z0 /h,n) becomes

ḡ~h,z0 /h,n!5
3

h3 E
0

h

j2~11h̄1~j!!dj (47)

which can be evaluated numerically. Equation~46! can now be
used in conjunction with Eq.~47! to determine the coefficients o
thermal curvature and thus to obtain average stresses in the
layer. Very often, the curvature is only measured in one directi
it is then commonly assumed that the layer is macroscopic
isotropic. The second term in Eq.~46! will then vanish and
ḡ(h,z0 /h,n) may be interpreted as the ratio between a measu
curvature and the corresponding flat plate curvature. It is emp
sized that the analysis is valid for elastic as well as inelastic l
ers. Figure 5 shows the functionḡ(h,z0 /h,n) versus initial out-
of-plane deflectionz0 /h for different normalized scanning length
h. It is observed that whenz0 /h'0.5, the measured curvature
deviate markedly from what is expected for an initially flat su
strate. It is also seen that the curvature near the center of
substrate changes sign whenz0 /h'2. For situations when the
initial curvature is large, the isotropic out-of-plane shape of
shell remain unchanged, therefore curvature measurements c
this case not be used to extract volume averaged stresses.

3 Conclusions
The present analysis of initially curved substrates has reve

a very useful first-order approximation. It has been shown tha
homogeneous shallow substrate with a thin, generally inela
anisotropic layer, may be modeled as a bare shallow subs
without layer and the effect of the layer is adequately described
the substrate/layer system’s coefficients of thermal curvature

Fig. 5 The function ḡ „h,z0 Õh ,n… „cf. Eqs. „46…, „47……. The pa-
rameter z0 Õh denotes the initial curvature and hÄ0.00, 0.50,
0.85, 1.00 is the ratio between the scanning length and the sub-
strate radius. An isotropic Si substrate with a Poisson’s ratio of
0.262 and a spherical initial curvature is considered.
Transactions of the ASME
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has further been shown that for certain combinations of ini
curvatures and coefficients of thermal curvature, the solution
the general anisotropic shallow shell problem degenerates into
well-known flat-plate solution. For situations when the initial cu
vature is large, a boundary layer develops near the free edge o
substrate. In this case, the solution that is valid in the interio
the shell as well as the boundary layer solution is presente
closed form for a general anisotropic substrate of arbitrary
plane shape.

For the particular case of an isotropic substrate with spher
initial curvature and a general thin layer deposit, a correction
the flat substrate solution that is valid for any constant ini
curvature is presented in closed form. This correction exhi
radial symmetry. The analytic correction enables investigation
the effects of various parameters, such as the initial curvature
Poisson’s ratio of the substrate. The initial out-of-plane deflect
z0 is observed to change the flat-plate solution significantly ifz0
;h/2 where h is the thickness of the substrate. The resulti
curvatures~which now vary with position! cannot be used directly
to interpret curvature measurements on shallow substrate
terms of volume-averaged stresses in the layer. However, this
be achieved by simulating curvature measurements on initi
curved substrates. These simulations make it possible to solv
inverse problem and hence to accurately use measured curva
for the determination of average layer stresses.
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Mårten Olsson~KTH! for valuable discussions during the cour
of this work.

Appendix
For the case of large initial curvatures, the solution in Sect

2.2 has been uniquely divided into a compatible part and a n
compatible part. The general anisotropic asymptotic bound
layer solution~noncompatible part! can now be derived. Conside
a coordinate systemj i at some point on the boundary of the arb
trarily shaped shell. Thej3-direction is defined to be perpendicu
lar to the middle surface and thej1-direction is defined to be
perpendicular to the boundary and positive inside the shell.
using bab

P according to Eq.~23!, the noncompatible parts of th
coefficients of thermal curvatures in the general first-order pr
Journal of Applied Mechanics
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lem are transferred to the boundary conditions. Asymptotically
stress-function defined according to Eq.~27! as well as the dis-
placements will vary much faster in thej1-direction as compared
to the tangential direction (j2), therefore the stress function an
displacements will asymptotically only be functions ofj1 and the
following problem results:

h3C1111w
IV112k̃22F950 S2222F

IV2hk̃22w950

2
h3

12
C1111w9~0!5M̂11[T

h3

12
C11ab~babT2bab

P ! (A1)

w-~0!5w~`!5w8~`!5N22~`!50

where all tensorial quantities have been transformed to the locj i
frame andN11(0)5N12(0)50 are automatically fulfilled. The
compliance tensor~inverse ofCabgd! is denotedSabgd . The so-
lution to this boundary layer problem may be written as

w52
6M̂11

h3C1111l
2 e2lj1~cos~lj1!2sin~lj1!!

(A2)

F5
M̂11

k̃22
e2lj1~cos~lj1!2sin~lj1!!

wherel453k̃22
2 /(h2C1111S2222). It can be shown that for situa

tions when the local curvaturek̃22 tend to zero,M̂11 also tends to
zero.
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A Strain-Based Formulation for
the Coupled Viscoelastic/Damage
Behavior
A strain-based thermodynamics framework is proposed for modeling the continuum
age behavior of viscoelastic materials. Damage is represented by an internal state
able in the form of a symmetric second rank tensor. The effect of damage on the c
tutive behavior is introduced through direct coupling between the damage variable
the viscoelastic internal state variables. This approach accounts for time-dependent
age as well as damage-induced changes in material symmetry. Also, damage evolu
modeled by employing the concept of damage surfaces. This work is motivated by e
mental observations of the response of swirl-mat and random chopped fiber mat
meric composites where viscoelastic creep was accompanied by a multitude of
matrix interfacial cracks. @DOI: 10.1115/1.1348013#
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1 Introduction
The growing interest in the use of polymeric materials~e.g.,

plastics and polymeric composites! for structural applications
mandates appropriate knowledge of the mechanical behavio
well as the durability of these materials. It is well known th
polymeric materials creep viscoelastically. In addition, expe
mental investigations~e.g., @1–4#! indicate that polymeric com-
posites may undergo distributed damage in the form of a mu
tude of microcracks. The objective of this article is to establis
framework for the constitutive modeling of the foregoing featu
of material behavior. Such a framework is essential for a relia
engineering design.

Up to the present time, most of the efforts for modeling distr
uted damage have been directed toward brittle materials exh
ing elastic behavior and metals exhibiting plastic or creep
sponse~e.g.,@5#!. Less attention has been paid to the modeling
damage in viscoelastic materials. Notably, Schapery@6–8# estab-
lished a basic formulation for viscoelastic response that is acc
panied by microstructural changes, such as profuse microcr
ing. The microstructural changes are represented in Schap
work by means of a set of internal state variables whose ev
tionary laws are motivated by considerations of viscoelastic fr
ture mechanics. It may also be mentioned that Weitsman@9# at-
tempted to model the coupling between viscoelasticity a
damage for a special class of linear viscoelastic materials.

In a recent article by the present authors~@10#! a stress-based
formulation for modeling the coupling between viscoelasticity a
distributed damage was developed and applied to a swirl-
polymeric composite. The effect of damage on material beha
was introduced through the concept of effective stress. Also, d
age evolution was related by the empirical Kachanov-Rabot
forms ~@5#!, which are best suited for monotonic creep loadin
For more complex loading histories the concept of damage
faces~@11#! offers a more versatile approach to damage evoluti

It is well known that damage surfaces are better expresse
strain space than in stress space~@5,12#!. This seems particularly
appropriate for viscoelastic response where creep occurs a
stress levels. More specifically, while under an applied stress

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, O
27, 1999; final revision, Mar. 24, 2000. Associate Editor: J. W. Ju. Discussion on
paper should be addressed to the Editor, Professor Lewis T. Wheeler, Departm
Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and
be accepted until four months after final publication of the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
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strain and damage evolve with time, under an applied strain
stress relaxes with time and it may then be possible to iden
states of stationary damage that are necessary to specify the
age surface. This supposition provided a motivation for
present strain-based formulation of viscoelasticity coupled w
damage. An additional advantage is due to the fact that str
based viscoelastic constitutive models are more convenient
implementation into finite element codes than stress-based
~e.g., @13#!. The present formulation employs concepts of co
tinuum damage mechanics as well as several existing concep
the thermodynamic theory of viscoelastic materials~@14,15#!. This
format accounts for time-dependent damage as well as dam
induced changes in material symmetry.

In Section 2 of this article, we present a general thermodyna
ics framework that accounts for both viscoelastic and damage
cesses. We proceed by modeling the coupling between these
processes in Section 3. In Section 4, damage evolution is mod
through the concept of damage surfaces and is illustrated b
simple example in Section 5. Section 6 concludes with a summ
and some remarks pertinent to the present work.

2 Thermodynamics Framework
Consider a polymeric material and letg r (r 51,2, . . . ,R) de-

noteR scalar-valued internal state variables representing the in
nal degrees-of-freedom of molecular motion in the polyme
chains. The internal state variable representing damage ca
related in terms of tensorial quantities of even ranks, which can
associated with the spatial distributions of microcracks~@5#!. For
simplicity, the damage variable is chosen as a symmetric sec
rank tensorv i j with dimensionless components. This dama
variable is capable of simulating changes in material symme
such that an initially damage-free isotropic material may beco
at most, orthotropic upon damage formation~@16,17#!1. Despite
the shortcomings of the aforementioned damage variable~@18#!, it
was adopted by several workers in the field of damage mecha
~e.g.,@16,19,20#! due to its relative simplicity and applicability to
practical circumstances. It should be mentioned that the pre
formulation can be readily modified to accommodate dam
variables of other tensorial ranks. Throughout this article the s
scriptsr andq are reserved for scalar quantities; anda, b, c, d, i,
j, k, l, m, andn are associated with tensorial quantities and co
the range 1,2,3. Also, the summation convention is implied o
the range of repeated indices unless stated otherwise.

t.
the
nt of
ill
E

1Also, an initially orthotropic symmetry may evolve into another orthotropy.
001 by ASME Transactions of the ASME
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Viscoelasticity and damage are irreversible thermodyna
processes. For a closed system and small strains, the entropy
duction inequality can be written in the form~@21#!

2ċ1s i j ė i j 2SṪ2
hiT,i

T
>0, (1)

where c is the Helmholtz free energy~per unit volume!,
s i j –components of a suitably defined volume-averaged stress
sor, e i j –components of the infinitesimal strain tensor,S–entropy
~per unit volume!, T–temperature,hi –components of the heat flu
vector,T,i5]T/]xi –components of the temperature gradient, a
xi –space coordinates. Also, in~1! an overdot signifies differentia
tion with respect to time.

Consider a Helmholtz free energy of the form

c5c~e i j ,g r ,vab ,T!. (2)

The functionc is assumed to be continuous and sufficiently d
ferentiable with respect to its arguments. Considerations of
entropy production inequality in~1! together with the functiona
dependence in~2! give the following familiar relations:

s i j 5
]c

]e i j
, (3)

S52
]c

]T
, (4)

and

G r ġ r1Vabv̇ab2
hiT, i

T
>0, (5)

whereG r andVab are the thermodynamic forces conjugate to t
internal state variablesg r andvab , respectively, and are given b

G r52
]c

]g r
, (6)

and

Vab52
]c

]vab
. (7)

Finally, from the dissipation inequality~5! we have the follow-
ing requirements:

G r ġ r>0, (8)

G r ġ r1Vabv̇ab>0. (9)

Inequality~8! must be satisfied whenever viscoelastic deformat
occurs, while when deformation is accompanied by damage
equality ~9! should be satisfied as well.

3 Constitutive Modeling

3.1 General Formulation. In this section a constitutive
model is formulated for the case of linear viscoelastic behav
coupled with damage. For simplicity, attention is restricted to
case of isothermal behavior. The extension to the general ca
nonisothermal conditions can be made following the same
proach adopted here. The underlying hypothesis in the pre
formulation is thatg r andvab are associated with disparate leng
scales; molecular forg r and, say, fiber/matrix interfacial cracks i
a fibrous polymeric composite forvab . The formulation will be
first established for fixed straine i j and damagevab and subse-
quently extended to fluctuatinge i j andvab .

For fixede i j andvab an irreversible thermodynamic process
triggered in the material, which prompts the viscoelastic inter
state variablesg r to drift spontaneously toward their equilibrium
valuesg r

e . Under isothermal conditions, allg r
e are independent o

temperature, hence
Journal of Applied Mechanics
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e5g r

e~e i j ,vab!. (10)

These equilibrium values are assumed to be continuous and
ficiently differentiable functions of their arguments. Assumin
that allg r andg r

e are sufficiently small, a Taylor series expansio
for c aboutg r

e takes the form

c5ce1
1

2
c rq~g r2g r

e!~gq2gq
e!1H.O.T., (11)

where

ce5ce~e i j ,vab!

is the value ofc at equilibrium,

c rq5S ]2c

]g r]gq
D

e

is a symmetric matrix considered to be constant, and H.O.T. re
to higher order terms neglected due to smallness ofg r andg r

e . In
the above relations, and in the sequel, the subscript ‘‘e’’ implies
that a quantity is calculated atg r5g r

e ;r . Note that at equilibrium
c is minimum ~@22,23#! and hence

S ]c

]g r
D

e

50,

and

c rqdg rdgq.0.

Consequently, there is no linear term in~11! andc rq is a positive
definite matrix. It should be mentioned that an expansion sim
to that in ~11! was previously used by Lubliner@24#.

Employing the usual assumption of viscous-like resistan
~@14,15#!, let

G r5arqġq , (12)

where, according to Onsager’s principle~@22,25#! arq is a sym-
metric matrix. Substitution of~12! into inequality~8! gives

arqġ r ġq>0.

Hence, the matrixarq is positive semi-definite. Note that in th
general casearq is a function of temperature, but since we a
considering only isothermal conditions thenarq is constant.

Equations~6!, ~11!, and~12! yield

arqġq1c rqgq5c rqgq
e . (13)

Since arq is a constant symmetric positive semi-definite mat
and c rq is a constant symmetric positive definite matrix, it
possible to rewrite~13! in a diagonalized form~@26#! as

Ar ġ̂ r1C r ĝ r5C r ĝ r
e ~no sum overr !, (14)

where ĝ r are transformed internal state variables, each bein
linear combination of the original internal state variablesgq . The
parametersĝ r

e are the equilibrium values corresponding toĝ r and
are obtained fromgq

e by the same linear transformation as that f
ĝ r . Also, Ar andC r are constants such thatAr>0 andC r.0.

For fixed strain and damage, the solution of Eq.~14! is

ĝ r5ĝ r
e~12e2t/tr ! ~no sum overr !, (15)

wheret r are relaxation times given by

t r5
Ar

C r
~no sum overr !. (16)

In terms of the transformed internal state variables, expansion~11!
can be rewritten as

c5ce1
1

2 (
r

C r~ ĝ r2ĝ r
e!21H.O.T. (17)
MARCH 2001, Vol. 68 Õ 305
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The viscoelastic strain can now be obtained by substituting~17!
into ~3! bearing in mind thatg r , and henceĝ r , are to be kept
fixed during the partial differentiation indicated in~3!. Employing
~15! we then obtain

s i j 5
]ce

]e i j
1(

r

]L r

]e i j
e2t/tr, (18)

where

L r5L r~e i j ,vab!5
1

2
C r~ ĝ r

e!2 ~no sum overr !. (19)

The first term on the right-hand side of~18! represents the long
term ~rubbery! part of the behavior, and the second term rep
sents the transient~time-dependent! part.

Motivated by previous works on linear elasticity with dama
~e.g., @17,27#!, we now recast the formulation in a format th
retains a linear viscoelastic relaxation modulus and introduces
effects of damage by mapping the stress and strain into ‘‘dam
effective’’ stress and strain, respectively. To this end, consi
first the transient part in~18!. ExpandingL r in terms of strain
around the reference state,e i j

ref50, up to quadratic terms to retai
linearity one obtains

L r5
1

2 S ]2L r

]e i j ]ekl
D

0

e i j ekl , (20)

where the subscript 0 implies that a quantity is calculated at
reference state. Note that the constant term in~20! vanishes since
(g r

e)050, and henceĝ r
e5L r50 at the reference state. In additio

the linear term in~20! is discarded since it corresponds to a r
sidual stress at the reference state, which is disregarded in
present formulation.

A more specific functional form forL r can be obtained by
realizing that the internal molecular motions represented byg r
occur on a much smaller dimensional scale than that of dam
represented byvab . This suggests that allg r

e , and hence allĝ r
e

andL r , are likely to be affected by damage in a common mann
i.e., they have common dependence onvab . Consequently, we
can rewrite~20! in the form

L r5
1

2
Pi jabDCabcd

r Pcdkle i j ekl ;r . (21)

In ~21!, DCi jkl
r is a double symmetric fourth rank tensor~i.e.,

DCi jkl
r 5DCjikl

r 5DCi jlk
r 5DCkli j

r !, and Pi jkl 5Pi jkl (vab) is a
double symmetric, fourth rank tensor-valued function of the da
age variablevab such that

at vab50→Pi jkl 5I i jkl , (22)

where

I i jkl 5
1

2
~d ikd j l 1d i l d jk!,

is the unit fourth-rank tensor andd i j is Kronecker delta.
Using ~21!, the transient part of~18! takes the form

(
r

]L r

]e i j
e2t/tr5Pi jabDCabcd~ t !Pcdklekl , (23)

where

DCi jkl ~ t !5(
r

DCi jkl
r e2t/tr. (24)

From ~18!, ~22!, and~23! it is clear thatDCi jkl is the undamaged
transient~time-dependent! stiffness tensor.

Consider now the long-term part of~18!. The equilibrium
Helmholtz free energyce can be expanded around the referen
state in the form
306 Õ Vol. 68, MARCH 2001
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ce5
1

2 S ]2ce

]e i j ]ekl
D

0

e i j ekl . (25)

Following common practice in continuum damage mechan
~e.g., @17,27#!, we further assume thatce depends on damage i
the separable form

ce5
1

2
Qi jabCabcd

e Qcdkle i j ekl , (26)

where Qi jkl 5Qi jkl (vab) is a double symmetric, fourth rank
tensor-valued function ofvab such thatQi jkl 5I i jkl at vab50, and
consequentlyCi jkl

e is the undamaged long-term~rubbery! stiffness
tensor which is typically positive definite~@25#!. Using ~26!, the
long-term part of~18! takes the form

]ce

]e i j
5Qi jabCabcd

e Qcdklekl . (27)

Relations~23! and ~27! indicate that the long-term part of th
behavior can in general depend on damage in a manner tha
fers from that of the transient part. However, for simplicity, w
assume here that both parts have the same dependence on d
so that

Qi jkl 5Pi jkl . (28)

Assuming that the inversePi jkl
21 exists, define the following ‘‘dam-

age effective’’ stress and strain tensors

s̃ i j 5Pkli j
21 skl (29)

ẽ i j 5Pi jkl ekl , (30)

then relation~18! can be rewritten in the compact form

s̃ i j 5Ci jkl ~ t !ẽkl , (31)

where

Ci jkl ~ t !5Ci jkl
e 1DCi jkl ~ t !, (32)

is the overall~long-term and transient! stiffness tensor of the un
damaged material. Relations~29! and~30! are consistent with the
formulations of the concepts of effective stress and effective st
~e.g.,@16,28#!, where the mapping tensor for the effective stress
taken to be the inverse of that of the effective strain. Also, n
that both s̃ i j and ẽ i j are symmetric due to the hypothesize
double-symmetry ofPi jkl .

Relation~31! suggests that for a given damage levelvab , in-
stantaneous mapping of the actual stressskl and strainekl accord-
ing to ~29! and~30!, respectively, lead to new stresss̃ i j and strain
ẽ i j quantities that are related by the usual linear viscoelastic c
stitutive relation for fixed strain~e.g., @25#!. Upon hypothesizing
time-translation invariance, and sinces̃ i j is linear in ẽkl , a
straightforward application of the superposition principle~@29#! to
expression~31! yields

s̃ i j 5E
02

t

Ci jkl ~ t2t!
dẽkl

dt
dt. (33)

Allowing for spatial variations of stress and damage the total
rivative d/dt inside the integral is replaced by a partial derivati
]/]t, holding the spatial coordinatesxi fixed. Thus

s̃ i j 5E
02

t

Ci jkl ~ t2t!
]ẽkl

]t
dt. (34)

Equation ~34! is the stress-strain constitutive relation for th
coupled linear viscoelastic/damage behavior, and can be
pressed in terms of the actual stress and strain as

s i j 5Pi jabE
02

t

Cabcd~ t2t!
]~Pcdklekl!

]t
dt. (35)

It should be noted that att50
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Ci jkl ~0!5Ci jkl
o 5Ci jkl

e 1(
r

DCi jkl
r , (36)

whereCi jkl
o is the initial ~elastic! stiffness tensor which is positive

definite ~@25#!.

3.2 The Isotropic Case. Consider now the special case
isotropic virgin material response, which applies to the class
randomly reinforced materials of current interest. The ove
stiffness tensorCi jkl takes the form~@25#!

Ci jkl ~ t !52G~ t !I i jkl 1FK~ t !2
2

3
G~ t !Gd i j dkl , (37)

whereG(t) is the overall shear modulus andK(t) is the overall
bulk modulus given, respectively, by

G~ t !5Go1DG~ t !, (38)

and

K~ t !5Ko1DK~ t !. (39)

In the above expressionsGo and Ko are the instantaneous she
and bulk moduli, respectively; andDG(t) andDK(t) are the tran-
sient shear and bulk moduli, respectively, obtained from~24! as

DG~ t !5(
r

DGre
2t/tr, (40)

and

DK~ t !5(
r

DKre
2t/tr, (41)

whereDGr andDKr are positive constants.

3.3 The Dissipation Inequality. The thermodynamic force
Vab conjugate tovab can be obtained by substituting~17! into ~7!
using ~21!, ~26!, and~28!

Vab52Pi jcdĈcdmn

]Pmnkl

]vab
e i j ekl , (42)

whereĈi jkl is given by

Ĉi jkl 5Ci jkl
o 2(

r
S ĝ r

ĝ r
eDDCi jkl

r . (43)

Since

0<S ĝ r

ĝ r
eD<1; ;r ,

then Ĉi jkl is bounded byCi jkl
e and Ci jkl

o corresponding, respec
tively, to the upper and lower limits ofĝ r /ĝ r

e . SinceCi jkl
e and

Ci jkl
o are positive definite then it follows thatĈi jkl is also positive

definite.
Employing ~6! and ~7!, the dissipation inequality~9! can be

expressed as

(
r

Ar ġ̂ r
22Pi jabĈabcdṖcdkle i j ekl>0, (44)

where

Ṗcdkl5
]Pcdkl

]vmn
v̇mn . (45)

Noting that the first term on the left-hand side of~44! is always
non-negative, then a sufficient but not necessary condition to
isfy ~44! is

2Pi jabĈabcdṖcdkl→positive semi-definite. (46)
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3.4 The Mapping Tensor. The functional form of the map-
ping tensorPi jkl is restricted by the requirement thatPi jkl is
double symmetric in addition to the requirements in~22! and~44!.
In general,Pi jkl is an anisotropic fourth-rank tensor function o
vab . However, due to the complexity of anisotropic function
forms ~@30#! and the fact that damage-induced anisotropy~or,
more precisely, orthotropy! can be deduced from a symmetr
second-rank damage tensor, then the more complex anisotr
functional form may be avoided.

Following Murakami and Imaizumi@19#, a simpler representa
tion of Pi jkl can be obtained by taking it as an isotropic fourt
rank tensor function ofvab . A further simplification of the rep-
resentation ofPi jkl is obtained by considering a case of dilu
concentration of microcracks in whichPi jkl is linear in vab . In
this case,Pi jkl can be written as~@19#!

Pi jkl 5c1d i j dkl1c2~d ikd j l 1d i l d jk!1c3d i j vkl1c4dklv i j

1c5~d ikv j l 1d i l v jk1d jkv i l 1d j l v ik!1H.O.T., (47)

whereca ~a51,2, . . . ,5! are constants.
From ~47!, it is clear that double symmetry ofPi jkl dictates that

c35c4 . Also, the requirement in~22! rendersc150 and c2
51/2. To determinec35c4 andc5 , we consider the special cas
of isotropic damage in which the ensuing damage pattern does
affect the symmetry of the virgin material. In this case damag
represented by a single scalarv so that

vab5vdab ; 0<v,1, (48)

and the mapping tensorPi jkl takes the form~@28#!

Pi jkl 5~12v!I i jkl , (49)

which is the inverse of the corresponding mapping tensor
maps the applied stress into the Kachanov effective stress in
case of scalar damage~e.g.,@11#!. The functional form in~49! can
be recovered from~47! by setting c35c450 and takingc55
21/4. Thus, the simplest possible form ofPi jkl becomes

Pi jkl 5I i jkl 2
1

4
~d ikv j l 1d i l v jk1d jkv i l 1d j l v ik!. (50)

It is interesting to note thatPi jkl
21 obtained from~50! indeed coin-

cides with one of the forms proposed by Chen and Chow@20# for
the tensor that maps the applied stress into an effective stres

The complete formulation of the constitutive model requires
expression for the evolution of the damage tensorv̇ab such that
~44! is satisfied. Such an expression can be formally derived fr
thermodynamic considerations~e.g., @17,27#!, but the usefulness
of such approach seems to be restricted to elastic or elastopl
response with damage~@31#!. In practice, the form of the damag
evolution equation depends on the material considered and
applied loading. This dependence is better correlated within
concept of damage surfaces~@5#! as discussed in the following
section.

4 Damage Evolution
The approach adopted here for describing damage evolu

follows closely that presented by Simo and Ju@28# and Lubarda
and Krajcinovic @32#. This approach has two main ingredient
First, a damage surface is introduced in strain space to disting
between the material states associated with evolving damage
those with stationary damage. Second, a damage potential i
sumed to exist, from which the constitutive law of damage grow
~i.e., the damage ratev̇ab! can be derived.

To characterize damage evolution, i.e.,damage loadingcondi-
tions, a damage functionf (e i j ,k) is introduced so that

f ~e i j ,k!<0, (51)

wherek is a positive scalar damage threshold history param
and at the initial onset of damagek5ko . The equality in~51!,
i.e., f 50, corresponds to strain states that lie on the damage
MARCH 2001, Vol. 68 Õ 307
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face and for which damage can evolve. For simplicity, the fu
tion f is chosen in the simple isotropic hardening form

f ~e i j ,k!5F~e i j !2k, (52)

whereF is a scalar function of the strain.
Introduce a monotonic scalar functionG(Vab) such that the

damage rate can be expressed as

v̇ab5l̇
]G

]Vab
(53)

wherel is a monotonically increasing positive scalar, i.e.,

l̇>0. (54)

Physically,l represents a measure of the cumulative damag
the considered instant of the deformation process. The functioG
is referred to as the ‘‘damage potential.’’

Following Simo and Ju@28# let

l̇5k̇, (55)

and definedamage loading/unloadingconditions according to re
lations ~51! and ~54! together with

l̇f 50. (56)

Thus, if f ,0 thenl̇50 and from~53! no damage evolution take
place, i.e., the so-calleddamage unloadingfrom the current state
of strain on the damage surface takes place. Iff 50 andl̇50 then
damage neutral loadingoccurs. Finally, if l̇Þ0 then f 50 and
damage loadingtakes place.

During damage loading, the consistency condition

ḟ 50, (57)

must always be satisfied. From~52! and ~57! we have

k̇5
]F
]e i j

ė i j . (58)

Assuming that no damage healing occurs, i.e., the damage su
can only expand, thenk is obtained from~52! and ~55! as

k5max$ko ,Fmax%, (59)

whereFmax is the maximum value ofF over the entire loading
history. Substitution of~58! and ~55! into ~53! yields

v̇ab5
]G

]Vab

]F
]e i j

ė i j . (60)

Thus, specification of the functional forms ofF andG completes
the formulation for the damage evolution. In practice, these fu
tional forms depend on the material considered and the ens
damage pattern. Example functional forms will be presented in
following section.

In the damage evolution Eq.~60! the thermodynamic forceVab

is given by expression~42! in which Ĉi jkl is given by~43!. Thus
an explicit expression forVab requires evaluation of the ratio
ĝ r /ĝ r

e . This ratio can be determined from the differential equ
tion

d

dt S ĝ r

ĝ r
eD 1S 1

t r
1

1

2L r

dL r

dt D S ĝ r

ĝ r
eD 5

1

t r
~no sum overr !,

(61)

whereL r is given by~21!. Equation~61! is obtained after simple
algebraic manipulations of Eq.~14! and making use of~16! and
~19!.

It should be noted thatVcd depends onvab explicitly through
Pmnkl and also implicitly through the ratioĝ r /ĝ r

e . Thus, in prac-
tice, Eqs.~34!, ~60!, and~61! need be implemented incremental
where for given strain and time increments an iterative proced
is required for determining the corresponding damage increm
308 Õ Vol. 68, MARCH 2001
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5 Illustrative Example for the Damage Functions: Iso-
tropic Symmetry

Two scalar functionsF(e i j ) andG(Vab) are needed in~60! to
obtain an explicit damage evolution relation. The simplest p
sible representation of these functions is to take each as an is
pic function of its tensor argument. Thus

F5F~ I 1
e ,I 2

e ,I 3
e !, (62)

and

G5G~ I 1
V ,I 2

V ,I 3
V!, (63)

where I 1
b , I 2

b , and I 3
b are the isotropic invariants of the corre

sponding second-rank symmetric tensorb i j . These isotropic in-
variants can be written as~@30#!

I 1
b5bkk ,

I 2
b5Ab i j8 b i j8 ,

and

I 3
b5det@b i j #,

whereb i j8 is the deviatoric part ofb i j

b i j8 5b i j 2
1

3
bkkd i j .

To simplify matters, discard the dependence ofF on I 3
e—this is

a customary constitutive assumption in damage modeling~@5#!.
Further,F is expressed in the following simple form~@32#!:

F5F1e i j8 e i j8 1F2ekk
2 , (64)

whereF1 andF2 are constants.
Considering the case of isotropic damage,Pi jkl can be taken in

the form ~49! and ~60! should reduce to the simple form

v̇ab5v̇dab . (65)

It follows thatG can depend only onI 1
V , i.e., on the trace ofVab ,

so that

]G
]Vab

;dab .

Consider the case of a dilute concentration of microcra
where the interaction between microcracks as well as the effec
accumulated microcracks on further microcrack formation can
neglected. In this case, the rate of damage evolutionv̇ may be
taken to be independent of the accumulated damagev. Depen-
dence ofv̇ on v, however, is implicit inVcc . Thus, to eliminate
dependence ofv̇ on v the functionG is taken to be linear inVcc

G5GVcc , (66)

whereG is a constant. Expression~66! can be thought of as the
first term in a Taylor series expansion ofG ~the constant term in
such expansion is immaterial to the present formulation!. Thus
addition of higher order terms in the expansion introduces dep
dence ofv̇ on v.

Underdamage loadingconditionsv̇.0 and the left-hand side
of the dissipation inequality~44! becomes

(
r

Ar ġ̂ r
21~12v!v̇Ĉi jkl e i j ekl ,

which is always positive sinceĈi jkl is positive definite. Thus the
requirement of positive dissipation is identically satisfied. Sub
tution of ~64! and ~66! into ~60! and use of~65! yield damage
evolution in the form

v̇5ae i j8 ė i j8 1bekkėkk , (67)

where
Transactions of the ASME
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a52F1G and b52F2G

are free parameters that need to be determined from the dam
evolution pattern in a considered problem. The first term on
right-hand side of~67! represents the effect of the deviatoric pa
of the behavior on damage evolution, whereas the second
represents the effect of the hydrostatic part.

6 Experimental Evidence and Its Interpretation
As noted earlier, the formulation presented in this paper is m

tivated by the experimentally recorded response of a class
Journal of Applied Mechanics
age
the
rt
erm

o-
ran-

domly reinforced composites. Though all data were collected
der stress control, and was further limited to uniaxial loading
was nevertheless possible to discern behavior that confirms
eral of the basic premises of the current strain-based model.

For instance, it was noticed~@4#! that viscoelastic creep ca
proceed at fixed levels of damage for an extended time durat
Namely, the imposition of a step stress, of magnitude that exce
some threshold level, reduces the instantaneous stiffness o
aforementioned composites, but that stiffness does not deg
any further for substantially long time spans despite the ongo
creep process. This decoupling between damage growth and c
Fig. 1 Strain versus time for a multigaged random chopped-glass mat Õurethane composite
coupon. Failure occurred at time t fÄ155 min.

Fig. 2 Expanded exposition of the strain recorded by strain gage #4, detailing the
experimental value and the prediction of power-law creep form
MARCH 2001, Vol. 68 Õ 309
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was observed to persist for relatively long times even at eleva
temperatures~@33#!. However, the contribution of damage grow
to total deformation under sustained loads became evident
durations that exceeded 75 percent to 95 percent of failure tim
most case ultimate failure~‘‘static fatigue’’! was centered abou
the softest location within test samples~@34#!.

Evidence for the above-mentioned creep, damage, and fa
processes is provided by the typical data shown in Figs. 1 and2.
Figure 1 exhibits typical creep data, recorded in a multigag
coupon made of randomly reinforced chopped glass mat/ureth
matrix materials. The coupon was subjected to a step stresss525
MPa~517 percent ofsult! and, upon unloading and full recovery
reloaded tos5124 MPa~585 percent ofsult!. The lower stress
level, which was well within the linear range, related the mag
tudes of the undamaged initial stiffnesses. The high stress l
was imposed intentionally in order to attain failure within a re
sonably short time. The imposition of the higher stress resulte
reduced initial stiffnesses, which were attributed to the prese
of instantaneous damage. As may be noted from Fig. 1, all
individual creep curves remain nearly parallel to each other u
time t r5142 min. The creep response for 0,t,t r can be fitted
very accurately to a power-law form. This form is applicable f
all stress levels, including the linear range~@4,33,34#!.

Consider now Fig. 2, where attention is focused on the data
correspond to strain gage #4, which is the location of failure
time t5t f5155 min. This figure exhibits an increasing discre
ancy between the recorded values of total strain and the extr
lated prediction of power-law creep. This discrepancy was att
uted to damage growth. In fact, this interpretation of the tim
dependence of damage growth resulted in good predictions
time-to-failure in ‘‘static fatigue’’ at various stress levels3 ~@34#!.

The foregoing observations suggest that damage can be qu
fied by the relative reduction in stiffness~5increase in compli-
ance!, while damage growth can be expressed by the differe
between the total time-dependent strain and the amount assoc
with power-law creep. The latter portion was interpreted as r
resenting the creep due to polymeric molecular motion. While t
molecular motion, which occurs on a dimensional scale m
smaller that that of micro-damage, seems to proceed inde
dently of damage growth, the evolution of damage cannot proc
in the absence of molecular motion. It was this interpretation
the physical processes at hand, which was supported visu
through microscopic observations~@4#!, that led us to the selection
of the inequalities~8! and ~9!4.

7 Concluding Remarks
In this article a thermodynamically consistent framework w

proposed to model the coupling between linear viscoelastic de
mation and microcrack damage. The effect of damage was in
porated into the constitutive equations in a form consistent w
the well-known effective stress and effective strain concepts,
damage evolution was related by the concept of damage surf

Several tensorial ranks for the damage variable can be
ployed in the context of the present formulation. However,
simplicity, in this article damage is represented by a symme
second-rank tensor. This representation is capable of simula
some changes in material symmetry induced by microcrack d
age. A more general representation is to take the damage var
in the form of a double symmetric fourth-rank tensorvabcd. Such
a representation is capable of simulating more general dam
induced changes in material symmetry~@5#!. This, however, com-
plicates construction of the functional forms for the mapping t
sor Pi jkl and the damage potentialG; since both have to be
functions of double symmetric fourth-rank tensors~vabcd in the

2Experiments performed by Dr. S. Deng.
3Data collected independently by Dr. H. McCoy, Jr.
4While Eqs.~8! and~9! are judged to be necessary, the replacement of~9! by Eq.

~46! is merely a sufficient condition, which is considered for mathematical exp
ency.
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case ofPi jkl and the conjugate thermodynamic forceVabcd in the
case ofG!. For fourth-rank tensors, the definite forms of the i
tegrity bases and invariants are not yet well established~@30#!.

An important remark is that in the present formulation the th
modynamic force conjugate to damage depends on the visco
tic internal state variables as can be seen from relations~42! and
~43!. This differs from previous formulations by Schape
@6,8,35#, where the thermodynamic force conjugate to damag
taken to be independent of the viscoelastic internal state varia
and to depend only on the elastic~instantaneous! part of the de-
formation. The argument put forth by Schapery is that based o
viscoelastic fracture mechanics analysis~@36#!, it was found that
the driving force forexisting cracks is independent of the vis
coelastic internal state variables. However, damage evolution
curs not only by the extension of existing microcracks, but also
the nucleation of new microcracks. In this general case, it is
pected that the state of the viscoelastic deformation in the mat
should have a direct effect on the formation of new microcrac
Hence, the thermodynamic force conjugate to damage is expe
to depend on the viscoelastic internal state variables. This is
in agreement with the internal state variable formulation for
coupled elastoplastic-damage behavior~e.g.,@31#!.
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Flow in Porous Media of Variable
Permeability and Novel Effects
The flow of polymeric liquids in a porous medium of variable permeability represente
a cylindrical tube randomly packed with glass spheres is studied. The cylinder repre
two porous media of different permeabilities and same porosity arranged in series
show that the energy loss is higher if the polymeric solution flows first through the po
medium with the smaller permeability rather than through the section of the cylinder
the larger permeability. The difference in energy requirements increases with increa
Reynolds number and may be as high as 25–35 percent for Reynolds numbers of O(1
This is a novel effect not observed for Newtonian and highly shear thinning inelastic fl
flowing through the same configuration. Energy requirements for the same volume
rate are much higher than a Newtonian fluid of the same zero shear viscosity a
polymeric solution. Energy loss increases with increasing Reynolds number at a
concentration to level off at a Reynolds number of O(1). At a fixed Reynolds numbe
loss is a strong function of the concentration and shows large increases with incre
concentration. For shear-thinning oil field spacer fluids De;0.1 represents a good cri-
terion for the onset of elasticity effects. For solutions of polyacrylamide De;0.1 corre-
sponds approximately to the flow rate at which pressure drop starts becoming depe
on the flow direction. Expressions for the friction factor and the resistance coefficie
a function of the Reynolds number have been developed using the inelastic
(Kutateladze-Popov-Kapakhpasheva) and viscoelastic eight constant Oldroyd mode
spectively. The behavior of inelastic shear-thinning and viscoelastic fluids as repres
by oil field spacer fluids and aqueous solutions of polyacrylamide is predicted qua
tively except the difference in energy requirements when the flow direction is revers
the case of the latter.@DOI: 10.1115/1.1349120#
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1 Introduction
The dynamics of the flow-through porous media is increasin

of pivotal importance to many petroleum engineering applicati
such as acidizing, fracturing, secondary recovery methods~water
and gas flooding, steam injection, in situ combustion!, gas cy-
cling, etc. Polymer solutions of different concentrations and rh
logical properties are increasingly and widely used in these ap
cations.

Polymeric flows exhibit significant elongational components
porous media due to the rapid changes in the cross-sectional
of the pore space in the flow direction. Unexpectedly high fl
resistance has been observed in experiments performed with
ethylene oxide and polyacrylamide solutions~@1–3#!. The influ-
ence of fluid properties such as molecular weight and polym
concentration, rheological properties of solvent, on flow resista
has been investigated theoretically and experimentally~@4–8#!.
Polymer degradation greatly affects flow resistance~@9#!. Experi-
ments also show a substantial increase in flow resistance
respect to that exhibited by Newtonian fluids in the case of n
uniform flows ~@10#!.

All the investigators mentioned above were concerned w
flow through homogeneous porous media. However, in oil en
neering applications, flow-through heterogeneous porous med
encountered frequently. In this paper, we report experimenta
sults concerning the flow of Newtonian, viscoelastic, and v
coinelastic liquids in a porous medium with a step change in p

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ma
23, 2000; final revision, August 15, 2000. Editor: L. T. Wheeler. Discussion on
paper should be addressed to the Editor, Professor Lewis T. Wheeler, Departm
Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and
be accepted until four months after final publication of the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
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meability, that is, two porous media of different permeabiliti
and same porosity in series. We also develop two theories
predict observed effects based on the KPK~Kutateladze-Popov-
Kapakhpasheva! and 8-constant Oldroyd models, respectively.

2 Theoretical Analysis

2.1 A Theory Based on a Viscoinelastic Constitutive Struc-
ture. To describe the shear rate-dependent viscosity, we use
concept of fluidity developed by Kutateladze et al.@11#. Fluidity
w(t) is defined as the reciprocal of the viscosity and is concei
of as depending on the shear stresst. We may define the range o
change ofw with t as

w0<w~t!,w` , w→w` as t→`, w5w0 when t<t1 .

For most fluids,t1;0. If we consider shear-thinning fluids
dw/dt.0 when t.t1 . Further, d2w/dt2.0,dw52wndt,
which suggests that a phenomenological theory can be constru
based on the dimensionless fluidityw* and shear stresst* ,

w* 5
w`2w

w`2w0
, t* 5u

t2t1

w`2w0
,

by writing either

w* 5e2t* , n51, t.t1 ; w* 5@12t* ~12n!#1/~n21!,

nÞ1, t.t1 .

Expanding the first of these in a series we obtain

w~t!5w01u~t2t1!2
u2

2

~t2t1!2

w`2w0
1O~u3!.

The coefficientu is called the structural fluidity coefficient. Keep
ing only the first two terms in this expansion yields the line
fluidity relationship between the fluidityw and the shear stresst.
Kutateladze et al.@11# show that the linear fluidity law
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w5w01ut, t1;0 (1)

represents the functionw(t) rather well for diverse fluids in the
range of shear stresses of practical interest.

The structure defined by~1! together with the linear momentum
balance yields the equation of motion for the axial flow of a line
fluidity fluid in a circular tube,

2
]P

]x
1

1

r

d

dr S rw21
du

dr D50.

The longitudinal velocity profile is given by

u5
w0DP~R22r 2!

4L
1

u~DP!2~R32r 3!

12L2 ,

whereL andR are the length and radius of the tube, respective
with DP denoting the pressure drop. The average velocity in
tube is defined by

^u&5
Q

pR2 5
w0R2DP

8L
1

uR3~DP!2

20L2 .

If the porous medium is regarded as a conduit with a com
cated cross section with mean hydraulic radiusRh ~@12#!, the av-
erage velocity becomes

^u&5
w0Rh

2DP

2L
1

2uRh
3~DP!2

5L2 .

The mean hydraulic radiusRh is the ratio of the cross sectiona
area available to the flow to the wetted perimeter, and is relate
the particle diameterDp and porositye ~@13#!

Rh5
Dpe

6~12e!
. (2)

The superficial velocityu0 is defined in terms of the averag
velocity ^u&,

u05
^u&e

C
5

w0e3Dp
2DP

72~12e!2LC
1

uDp
3e4~DP!2

540~12e!3L2C
,

where C is the tortuosity factor which accounts for the ext
length of the particle paths in the porous bed. Analysis of mos
the experimental data suggestsC525/1252.0833 ~@13#!. When
the permeabilities of the pieces of a porous medium vary,
average permeability depends on the manner in which the pi
are arranged~@14#!. WhenN porous media of different permeabil
ties are in series, the average permeabilityK of the composite
medium is the harmonic mean,

K5NS (
i

N

Ki
21D 21

. (3)

According to the Blake-Kozeny-Carman equation, the perm
ability Ki of the i th medium in series is related to the partic
diameterDpi by

Ki5
Dpi

2 e3

180~12e!2 . (4)

The actual size of the spherical particles has no influence on
porosity~@15#!. We assume that the porosities of the porous me
in series is the same even though the permeabilities are diffe
as is the case in our experiments~Section 3!

e5e i , i 51, . . . ,N. (5)

Substitution of Eqs.~4! and ~5! in Eq. ~3! leads to the following
expression for the average particle diameter:
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Dp5A N

(
i 51

N

Dpi
2

)
i 51

N

Dpi . (6)

Hence, the superficial velocity in a porous medium with diffe
ent permeabilities in series is given by

u05
w0e3Dp

2DP

150~12e!2L
1

uDp
3e4~DP!2

1125~12e!3L2

whereDp is defined in Eq.~6!. Whenu50 we obtain the expres
sion for the superficial velocity of a Newtonian fluid~@13#!.

Pressure drop in porous media is usually represented in term
the resistance coefficientL, a function of the friction factorf, and
the Reynolds number Re,

L5Re• f , f 5
DPDpe3

ru0
2L~12e!

, Re5
Dpu0rw

12e
, (7)

where

w5w01ut, t5
Rh

C

DP

L
5

2DpeDP

25~12e!L
.

We obtain

Re5b~110.13c!~110.08c!,

f 5
150

b~110.13c!2 , L5
150~110.08c!

110.13c
,

where

b5
w0

2e3Dp
3rDP

150~12e!3L
, c5

uDpeDP

w0~12e!L
.

2.2 A Theory Based on a Viscoelastic Constitutive Struc-
ture. We start with the 8-constant Oldroyd model,

t i j 1l1H D

Dt
t i j 1um,itm j1um, jtmiJ 1motkkdi j

2m1~t imdm j1t jmdmi!1a1d i j tkmdkm

52h0H di j 1l2F D

Dt
di j 1um,idm j1dimum, j G

22m2dimdm j12a2d i j dmndmnJ ,

s i j 1Pd i j 5t i j ,

wheret i j , s i j , anddi j represent the extra stress, total stress, a
rate of deformation tensors. It can be shown that this constitu
structure yields for the viscosityh at a given shear rateġ ~@16#!

h

h0
5

11s2ġ2

11s1ġ2 , (8)

where h0 is the zero shear viscosity, ands1 together withs2
represent combinations of the eight material parameters in
8-constant Oldroyd model, and can be considered to be inde
dent material parameters in their own right. If this model is
reflect the behavior of real fluids in simple shear, that is, when
shear stress curve always seems to rise monotonically with s
rate, s1 and s2 must be restricted,s2,s1 ,s2 /s1>1/9 ~@16#!.
We meet these criteria in our experiments.

The steady flow problem of an 8-constant Oldroyd fluid in
cylindrical tube has been solved by Williams and Bird@17#. They
determine that the pressure dropDP in a tube of lengthL and
radiusR is given by
MARCH 2001, Vol. 68 Õ 313
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2h0

DP

L
R5AAX, X5s1ġ2ur 5R , n5

s2

s1
, A5

11nX

11X
.

(9)

An expression for the average velocity^u& in terms of the wall
shear rate can be developed,

3As1^u&
R

5AX2
F

2~AAX!3
,

F5
1

2
n3X323n2~n21!X13n~n21!~2n21!ln~11X!

2
1

2
XS n21

11XD 2

@6n1~7n21!X#. (10)

We use the concept of hydraulic radius as defined in Eq.~2!,
introduce the average velocity^u& and the superficial velocityu0 ,

u05^u&
e

C
, ^u&5

Rh

4
ġ2U

r 5R

, (11)

and finally obtain the pressure dropDP over a lengthL from Eqs.
~9! through~11!,

DP5
6h0LA

Rh
A X

s1
, (12)

in terms of the average particle diameterDp imbedded inRh given
by Eq. ~6! and Eq.~2!, respectively. Substitution of Eqs.~12!,
~11!, and~8! into Eq. ~7! yields the friction factor, the resistanc
coefficient and the Reynolds number,

f 5
486h0C2B2A

rRh
2 As1

X
, L5

108CX2

2X22A3F
, (13)

Re5
rRh

2B

9CAh0
A X

s1
, B512

F

2X22A3 . (14)

We note that in contrast to the case of the viscoinelastic c
stitutive structure used in the previous section the tortuosity fa
used in Eq.~11! in the case of a viscoelastic constitutive structu
is not constant. It is a strong function of the elastic properties
the fluid together with the properties of the porous medium.
fact, we determine in Section 4 of the present paper that if
chooseC51.3 andC53.0 for two solutions of polyacrylamide
one percent and two percent in concentration by weight, res
tively, we get the best qualitative description of the flow behav
that this model can provide in the context of our experimen
which suggests that the tortuosity factor may assume increasi
larger values with increasingly elastic fluids, that is, higher c
centrations of polyacrylamide in this case.

3 Experimental Apparatus and Procedure
The experimental apparatus used in this work is sketche

Fig. 1.
The liquid is supplied from a pressurized feed tank 1 to the

section 2 with the porous medium. The flow rate is control
through the valve 3 located at the exit of the test tube. At the e
the test liquid is collected in the graduated cylinder 4 and
mean volumetric flow rate is measured by the weight method
stainless steel flow cell with an internal diameter of 4.5 cm an
length of 30 cm, packed with glass spheres with diameters
1000650 and 3000650 microns in series has been used for t
experiments. Spheres of different diameters fill each half of
tube. To prevent the mixing of glass spheres of different diame
and to contain the packed bed, fine mesh screens are attach
the inlet, exit, and middle sections of the flow cell. To achieve
stable packing arrangement, the spheres have been packed in
cell by mechanical vibration. The flow cell packed with gla
spheres of a kind was weighed before and after saturation
314 Õ Vol. 68, MARCH 2001
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distilled water to determine total pore volume. The porosities
both parts of the packed bed were found to be 0.40. As a check
porosities were also determined by weighing the spheres fil
the tube. The same value was obtained for the porosities of b
porous media in series.

To avoid the entrance and exit effects at the ends of the po
medium, the difference in required pressure for two porous me
of different lengths~30 and 50 cm! was measured at the same flo
rate ~@18#!. This pressure difference is the pressure drop acro
porous medium whose length is the difference between
lengths of the two porous media used~e.g., 20 cm! which is free
of all end effects. The permeability of each porous medium in
series arrangement was determined by pumping water at a
stant rate into the cell packed with particles of the same diam
and by measuring the pressure drop. Using Darcy’s equation

u05
K

m

DP

L
,

the permeabilities of flow cells packed with glass spheres of 1
mm and 3000mm in diameter were calculated to be 1.08
31025 cm2 and 9.66531025 cm2, respectively. The average pe
meability according to Eq.~3! is 1.95131025 cm2.

3.1 Liquids Used. Newtonian liquids used in the exper
ments are distilled water and a glycerol-water solution with
viscosity of 0.0184 Pa•s at 20°C. The non-Newtonian liquids in
vestigated are a polyacrylamide based oil field spacer fluid
aqueous polyacrylamide solutions of one percent and two per
concentration by weight prepared with distilled water and po
acrylamide of molecular weight 53106. The oil field spacer fluid
contains 0.6 percent polyacrylamide by weight with several d
ferent proprietary additives.

The polymer solutions were carefully prepared by slow shak
to ensure that no degradation of the polymer occurred. Viscos
were measured in a rotational viscometer Rheotest RV-2 at 20
The results show that the non-Newtonian viscosity of the spa
fluid and the polymeric solutions of both concentrations~one per-
cent and two percent by weight! is adequately described by th
linear fluidity model in the shear stress range relevant to our
periments, 0,t<35 Pa~Fig. 2!.

We present in Fig. 3 viscosity versus shear rate data for
liquids used. We determine the values of the parameterss1 , s2 ,
andh0 in Eq. ~8! for both one percent and two percent solutio
of polyacrylamide by a best fit of the data points. We find that
one percent and two percent PAA,~n5s2 /s150.286, s1

53.1025 s22, h050.133 Ns/m2! and ~n5s2 /s150.250, s1

53.1025 s22, h050.150 Ns/m2!, respectively.

Fig. 1 Experimental set-up: „1… filling tank; „2… test tube; „3…
valve, „4… measuring cylinder
Transactions of the ASME



Journal of Applie
Fig. 2 Fluidity as a function of the shear stress for two aqueous solutions of polyacryla-
mide „n–one percent, h–two percent … and for the spacer fluid „L…

Fig. 3 Viscosity as a function of the shear rate for two aqueous solutions of polyacrylamide
„n–1 percent, h–2 percent … and for the spacer fluid „L…
i

nts.
are
f-
han
ant
l to
effi-
and
4 Results and Discussion
Two sets of experiments have been conducted for each flu

Tests ~I!: Flow proceeds through the porous medium
with the smaller permeability towards the porous medium
with the larger permeability.

Tests ~II !:Flow proceeds through the porous medium
with the larger permeability towards the porous medium
with the smaller permeability.
d Mechanics
d:

Figures 4 and 5 show the results obtained in the experime
For water and the glycerol-water solution experimental results
quite well represented by Eq.~7! with a constant resistance coe
ficient L5150. We conclude that at Reynolds numbers less t
10, inertial effects are negligible and viscous forces are domin
which implies that the pressure gradient is directly proportiona
the superficial velocity. As a consequence, the resistance co
cient assumes constant values. For Reynolds numbers 10
MARCH 2001, Vol. 68 Õ 315
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Fig. 4 Friction factor as a function of the Reynolds number. Tests I: „d…–distilled water, „b…–
glycerol Õwater, „m…–one percent PAA, „j…–two percent PAA, „l…–spacer fluid; Tests II: „s…–
distilled water, „v…–glycerol-water, „n…–one percent PAA, „h…–two percent PAA, „L…–spacer
fluid. Solid curves correspond to theoretical predictions obtained using Eqs. „13… and „14… or
Eqs. „7…: „—… Oldroyd model, one percent PAA, h0Ä0.133 NsÕm2, nÄ0.286, s1Ä3.10À5 sÀ2, C
Ä1.3; „— - —… Oldroyd model, two percent PAA, h0Ä0.150 NsÕm2, nÄ0.250, s1Ä3.10À5 sÀ2, C
Ä3.0; „ … spacer fluid, uÕw0Ä0.06 m2ÕN; „ . . . … Newtonian fluids, distilled water, and
glycerol Õwater solution.

Fig. 5 Resistance coefficient as a function of the Reynolds number. Tests I: „d…–
distilled water, „b…–glycerol Õwater, „m…–one percent PAA, „j…–two percent PAA, „l…–
spacer fluid; Tests II: „s…–distilled water, „v…–glycerol-water; „n…–one percent PAA,
„h…–two percent PAA, „L…–spacer fluid. Solid curves correspond to theoretical pre-
dictions obtained using Eqs. „13… and „14… or Eqs. „7…: „—… Oldroyd model, one percent
PAA, h0Ä0.133 NsÕm2, nÄ0.286, s1Ä3.10À5 sÀ2, CÄ1.3; „— - —… Oldroyd model, two
percent PAA, h0Ä0.150 NsÕm2, nÄ0.250, s1Ä3.10À5 sÀ2, CÄ3.0; „-d-… KPK model, one
percent, PAA; „–s–… KPK model, 2 percent PAA; „ … spacer fluid, uÕw0
Ä0.06 m2ÕN; „" " " "… Newtonian fluids, distilled water, and glycerol Õwater solution.
MARCH 2001 Transactions of the ASME
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Fig. 6 The variation of the Deborah number „De… with the Reynolds number
„Re…: „—… spacer fluid; „ … one percent PAA; „— - —… two percent PAA
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larger, the magnitude of the inertial forces becomes large eno
to influence the flow and the resistance coefficient starts incr
ing. Similar results were obtained in previous investigatio
~@10#!. The friction factor and the resistance coefficient for Ne
tonian fluids do not depend on flow direction as we obtain
same data when the flow direction is reversed, that is, data
tests I and II are the same.

When the Reynolds number is smaller than 0.04, the pres
drop required in the case of the spacer fluid for the same flow
as the Newtonian fluid is higher than that of the Newtonian flu
and increases with decreasing Reynolds numbers. For Reyn
numbers larger than the crossover value 0.04 and smaller tha
the pressure drop required for the same flow rate as the Newto
fluid is smaller than the Newtonian case, and decreases with
creasing Reynolds numbers. At Re50.7 frictional effects are 20
percent less than the Newtonian case.

A criterion for the importance of elastic effects can be est
lished on the basis of a Deborah number defined as

De5
h0t1/2

Dp /u0
,

where,h0 , t1/2, Dp , andu0 are the zero-shear-rate viscosity, th
value of the shear stress at which the viscosityh is half of h0 , the
particle diameter of the porous media in series given by Eq.~6!
and the superficial velocity, respectively~@12#!. The variation of
De versus Re is shown in Fig. 6. Sadowski@19# has established
experimentally that elastic effects seem to set in at about
;0.1. This critical Deborah number corresponds to a Reyno
number equal to one in the case of the spacer fluid, Fig. 6.
;1 is approximately the Reynolds number at which deviatio
from the predictions of the linear fluidity model start, Fig. 5. W
are led to conclude that Sadowski’s criterion works quite well
shear-thinning fluids of this type. When the Reynolds num
exceeds 2, both the friction factor and the resistance coeffic
increase rapidly and at Re55 they are at least three times larg
than the data for Newtonian fluids. The friction factor and t
resistance coefficient obtained experimentally are reasonably
predicted theoretically by the linear fluidity model whenu/w0

50.066 m3/N for Re,1. Flow direction again has no effect on th
hanics
ugh
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flow parameters in the case of the spacer fluid, and the pres
drop required for the same flow rate in tests I and II is the sa
~Fig. 5!.

In the case of the polymeric fluids, the flow resistance becom
higher and the pressure drop larger compared with Newton
fluids as the Reynolds number is increased. The resistance co
cient increases dramatically with concentration. For instance
Re51.0, the resistance coefficientL and the pressure drop for th
one percent solution in the case of tests~II ! are four times larger
than the Newtonian case. But when the concentration is dou
~two percent solution!, the resistance coefficient becomes 12 tim
larger than that for the Newtonian liquid. Frictional effects i
crease at a much faster rate than the rate of increase of the
centration, and much larger pressure gradients are required a
same Reynolds number, that is, for the same flow rate. At
concentration, the resistance coefficient increases rapidly with
creasing Reynolds numbers, and the rate of increase of the r
tance coefficient becomes steeper as the concentration increa
the same Reynolds number. The resistance coefficient seems
constant at very small and relatively large Reynolds numbers w
a steep change in between. As the concentration increases
Reynolds numbers denoting the upper and lower boundaries o
region where the change takes place become smaller. Fo
stance, for the one percent and two percent PAA,L is constant
when Re1,0.0115 and, Re1,0.01, respectively. But, it shows a
order of magnitude change with increasing Reynolds numb
when Re.Re1 and becomes constant again when Re.2 and, Re
.1.2, respectively.

For the same polymeric solution, flow resistance depends on
flow direction. Experimental data shows that energy loss is hig
if the polymeric solution flows first through the medium with th
smaller permeabilityK1 rather than through the section of th
flow cell with the larger permeabilityK2 first ~Figs. 4 and 5!. The
dependence of the resistance coefficient on the flow directio
quite distinct, and the difference may be as large as 25–35
cent. Flow resistance increases with increasing Reynolds num
at a fixed concentration when flow direction is changed fromK2
→K1 to K1→K2(K1,K2). Flow resistance also shows stron
dependence on concentration when flow direction is revers
That is, at the same Reynolds number increasingly larger pres
MARCH 2001, Vol. 68 Õ 317
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drops are required for the same flow rate with increasing conc
tration, or equivalently increasing elasticity. As the concentrat
becomes larger, the difference in energy requirements for
same flow rate in theK2→K1 and K1→K2(K1,K2) directions
starts becoming noticeable at smaller Reynolds numbers. Fo
stance, whereas the critical Reynolds number for the one per
solution is around 0.11, it recedes to 0.065 for the two perc
solution. Assuming that the criterion De;0.1 for the onset of
elasticity effects applies as well to the polyacrylamide solutio
we determine the critical Reynolds numbers of;0.2 and;0.15
for the one percent and two percent solutions of polyacrylam
respectively, from Fig. 6. These critical Reynolds numbers co
spond approximately to the flow rate at which a significan
higher pressure drop is required when the fluid flows first throu
the lower permeability medium, in particular for the one perc
polyacrylamide solution, Fig. 5.

The predictions of the 8-constant Oldroyd model using the v
cosity functions for the polyacrylamide solutions determined
ing the data in Fig. 3 are also shown in Fig. 5 together with
predictions of the inelastic KPK model using the fluidity da
given in Fig. 2. There is better qualitative agreement with the d
in the case of the 8-constant Oldroyd model for the lower conc
tration fluid except for very small Reynolds numbers where
plateau is not predicted at all in the case of either concentra
The inelastic KPK model also predicts the trend for both conc
trations, that is the steep increase in the resistance coefficient
increasing Reynolds numbers, but fails to predict the plateaus
the resistance coefficient at both high (Re.1) and low (Re
,0.05) Reynolds numbers. The fact that both constitutive mod
can qualitatively describe the steep increase in the resistanc
efficient with increasing Reynolds numbers between the high
low plateaus may not be surprising after all and may be expe
as the average velocity expression developed for the 8-con
Oldroyd model~Eq. ~10!! does not reflect elastic effects. What
surprising is that the 8-constant Oldroyd model can predict
upper plateau regardless of the particular value of the tortuo
factor used whereas the KPK model completely fails to do so
either concentration. We remark that the tortuosity factorC when
used in conjunction with viscoelastic models~Eq.~11!1! becomes
a function of the elastic properties of the fluid. The theoreti
curves in Fig. 5 for the 8-constant Oldroyd model have been
tained by assigning values toC for the best qualitative descriptio
of the flow data. We find thatC must be 1.3 and 3.0 in the case
one percent and two percent PAA, respectively, which sugg
that the tortuosity factor may increase with increasing elasticity
is clear that the theory presented here is incapable of descri
the considerable increase in pressure drop when flow directio
switched fromK2→K1 to K1→K2(K1,K2). At this point in
time, we cannot offer a theory to explain this novel phenomen
which is closely governed by the behavior of the test liquids
elongational flows. Due to rapid changes of the cross-sectio
area of the pore space in the flow direction, flow through pac
beds exhibits large elongational components of velocity. An
crease in the extension rate may cause an increase in the app
viscosity and in the flow resistance in elongational flows of h
molecular weight polymer solutions.

Experimental results obtained concerning the energy loss w
step change in permeability can be heuristically extended to
rous media arranged in series over a lengthL with increasing
permeabilitiesK1,K2,¯,KN21,KN . If N is taken large
enough, we may obtain a close enough approximation to a n
homogeneous porous media with a continuous permeability
dient in the flow direction. Experiments imply therefore that in
anisotropic, nonhomogeneous medium with constant porosity
energy loss is considerably higher for the same flow rate if fl
proceeds in the direction of the positive permeability gradient

Conclusions
Experiments were run in a porous medium with a step cha

in permeability represented by a flow cell with two adjoining p
318 Õ Vol. 68, MARCH 2001
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rous media in series of equal length and of different permeabili
and same porosity. The results can be extended heuristically t
anisotropic porous medium of constant porosity and continu
permeability gradient.

We find that for two Newtonian liquids, water and a wate
glycerol solution, the resistance coefficient is constant when in
tial effects are negligible, Re,10. A highly shear-thinning oil-
field spacer fluid requires less energy~smaller resistance
coefficient! than a Newtonian fluid for the same volume flow ra
for Reynolds numbers between 0.08 and 1.5. Elastic effects
becoming important at a critical Deborah number of 0.1,
equivalently at a critical Reynolds number of one. The press
drop required for the same volume flow rate is higher than
Newtonian case for Re.2, and increases rapidly with increasin
Reynolds numbers.

Experiments with two polymeric solutions~one percent and two
percent PAA! show that at all Reynolds numbers the press
drop required for the same volume flow rate is much higher th
the Newtonian liquid of the same zero shear rate viscosity. Ene
loss increases with increasing Reynolds numbers to level off
Reynolds number ofO(1). The pressure drop required at tha
Reynolds number is an order of magnitude larger than the p
sure drop for the Newtonian liquid, and increases with increas
concentration.

The pressure drop required for the same volume flow rate w
the flow direction is switched fromK1→K2 to K2→K1(K1
.K2), where Ki represents the permeability, is considerab
higher. The difference in energy requirements increases with
creasing Reynolds numbers at any concentration to reach a
most constant value at Re;O(1). At Re;O(1) it is as much as 25
percent and 35 percent for the one percent and two percent s
tions of polyacrylamide, respectively.

The Newtonian behavior is well predicted theoretically wh
inertial effects are negligible. Two theories built on the inelas
KPK ~Kutateladze-Popov-Kapakhpasheva! and viscoelastic Old-
royd models show only qualitative agreement with experimen
data for the nonlinear fluids used. But, predicting the difference
energy requirements for viscoelastic fluids even qualitativ
when the flow direction is reversed remains a challenge.

Nomenclature

di j 5 rate of deformation tensor
Dp 5 particle diameter
C 5 tortuosity coefficient
f 5 friction factor

L 5 length of the test tube
K 5 permeability
R 5 radius of the test tube

Rh 5 hydraulic radius
u 5 longitudinal ~axial! velocity

^u& 5 average velocity
u0 5 superficial velocity
Q 5 volume flow rate
P 5 pressure
w 5 fluidity or reciprocal of viscosity

w0 5 lower bound of fluidity below a limiting valuet1 of the
shear stress

w` 5 upper bound of fluidity reached at large shear stresses
u 5 structural fluidity coefficient
e 5 porosity
L 5 resistance coefficient
r 5 density

s i j 5 total stress tensor
t i j 5 extra-stress tensor

t 5 shear stress
t1/2 5 shear stress at whichh5h0/2
ġ2 5 shear rate
h 5 viscosity

h0 5 zero shear viscosity
Transactions of the ASME
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s1 5 material parameter—a function of the eight constants
the Oldroyd Model

s2 5 material parameter—a different function of the eight
constants in the Oldroyd Model

n 5 the ratio ofs2 over s1
d i j 5 Kronecker tensor
Re 5 Reynolds number
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Rotary Inertia in the Classical
Nonlinear Theory of Shells and
the Constitutive (Non-Kinematic)
Kirchhoff Hypothesis
A general nonlinear theory of isothermal shells is presented in which the only app
mations occur in the conservation of energy and in the consequent constitutive rela
which include expressions for the shell velocity and spin. No thickness expansio
kinematic hypotheses are made. The introduction of a dynamic mixed-energy d
avoids ill-conditioning associated with near inextensional bending or negligible ro
tional momentum. It is shown that a variable scalar rotary inertia coefficient exists
minimizes the difference between the exact kinetic-energy density and that delive
shell theory. Finally, it is shown how specialization of the dynamic mixed-energy de
provides a simple and logical way to introduce a constitutive form of the Kirch
hypothesis, thus avoiding certain unnecessary constraints (such as no thickness ch
imposed by the classical kinematic Kirchhoff hypothesis.@DOI: 10.1115/1.1357870#
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1 Introduction
In a classicaltheory of shells the basic kinetic ingredients are

stress resultant tensorN and a stress couple tensorM. That is, no
moments higher than the zeroth and first appear.

Chapter VIII of Libai and Simmonds@1# shows that exact
integral-impulse equations for a shell follow naturally and simp
without any kinematic assumptions, from analogous equations fo
a three-dimensional continuum. The descent from three to
dimensions leads to definitions ofN andM in terms of integrals
through the ~possibly variable! shell thickness of the three
dimensional first Piola-Kirchhoff stress tensor and to definitio
of translational and rotational momenta,L and R, in terms of
thickness integrals of the velocity and the deformed position
the three-dimensional shell-like body.

From the local~differential! form of the equations of motion o
a shell, which areexactand contain the translational and rotato
inertia terms,L̇ and Ṙ, where the superior dot denotes differe
tiation with respect to time, one obtains a power identity by int
ducing a two-dimensional velocity and spin,v andv,—both ini-
tially undefined—and applying Green’s theorem. This produ
two-dimensional extensional-shear and bending strain tensorE
andK, whose local rates,E* andK* , are conjugate toN andM,
respectively. However, in dealing with energy and constitut
relations, it is convenient to introduce ‘‘back-rotated’’ stress
sultants and couples,n andm, and extensional-shear and bendi
strains,e andk, as explained later.

The inclusion of rotary inertia in shell theories derived from t
three-dimensional equations of motion by integrating through
thickness has been considered by Habip and Ebcioglu@2#, Habip
@3#, Naghdi@4#, Antman@5#, and Libai and Simmonds@1#, among
others. All the definitions in@2–5# resulting in afinite set of shell
equations use a priori kinematic hypotheses on the th
dimensional motion of the shell; see Eq.~27! of @2#, Eq. ~19! of
@3#, Eq. ~7.5! and ~12.25! of @4#, and equation~XIV.9.11! of @5#.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Au
7, 2000; final revision, Oct. 19, 2000. Associate Editor: R. C. Benson. Discussio
the paper should be addressed to the Editor, Professor Lewis T. Wheeler, Depa
of Mechanical Engineering, University of Houston, Houston, TX 77204-4792,
will be accepted until four months after final publication of the paper itself in
ASME JOURNAL OF APPLIED MECHANICS.
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No such kinematic hypotheses are introduced in@1#. The present
note modifies and extends the approaches in@1–5# in several
ways:

1 In place of a constant rotary inertia coefficient~or, more
generally, a constant rotary inertia tensor!, I introduce avariable
rotary inertia coefficient, depending on position and time and c
sen so thatthe kinetic energy of the shell is as close as possible
the exact three-dimensional kinetic energy. ~Note that if one at-
tempts to describe the gross motion of any deformable body
the motion of its center of mass and some mean rotation abou
center of mass only, then, in general, it is impossible to acco
for all the kinetic energy of the body. Think of a ball that unde
goes purely radial motion.!

2 I define an isothermalelastodynamicshell as one for which
there exists an energy density« ~kinetic plus elastic!, depending
on L , R, e, k, and possiblyy, the position onM, a reference
surface of mass to be specified presently. Then, using an
suggested to me independently by Ladeve`ze and Makowski, I
definev[«,L andv[«,R . That is, I consider inertia terms as pa
of the constitutive relations.

3 By means of a partial Fenchel-Lagrange transformation
introduce amixed elastodynamic-energy densityc~L ,v,n,k;y!.
One motivation is that, in the static theory of shells, the associa
Euler equations are well-conditioned in the sense that they req
no special treatment in the extreme cases of membrane
bending-dominated behavior~@1,6#!.

4 Another motivation for introducing the dynamic mixed
energy densityc is that a rather obvious specialization yields wh
Libai and@1# have called theconstitutive Kirchhoff hypothesis—a
hypothesis based, not on a priori kinematic assumptions, bu
certain approximations in the constitutive relations. The latter,
their very nature, can only approximate actual material behav
Thus, all approximations in isothermal shell theory are throw
into those parts of the theory that are unavoidably approxima

2 Geometry and Exact Equations of Motion of a Shell
A shell may be defined as a material body such that theinitial

positionx of each material particle belongs to a family of noni
tersecting surfacesS in three-dimensional Euclidean space. Th
is,
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xPS~y,z!, yPR, 2H<z<H, (1)

whereR is some reference surface andH is some given positive
constant with the dimensions of LENGTH.~In general, the shell
may have variable thickness andz is not distance along the nor
mal toR.! Themotionof the shell is then a vector-valued functio
of the form x̄(y,z,t).

As in @1#, it simplifies the equations that follow and entails n
loss of generality to takeR5M~y,0!, where M is the time-
dependentsurface of mass, whose position is defined by

m~y!ȳ~y,t ![E
2

1

r x̄mdz. (2)

Here,

m~y![E
2

1

rmdz (3)

is the mass per unit area ofR, *2
1[*2H

H , r is the initial mass/
volume of the shell material,m is a geometric factor defined~im-
plicitly ! by the relationdV5m(y,z)dRdz, wheredV is a differ-
ential element of volume in the shell at~y,z!, and dR is a
differential element of area onR. ~See the footnote on p. 456 o
@1# for an explicit formula form.! For convenience, assume thatR
is smooth and orientable with an associated unit normalb at each
point y. As shown in@1#, the local~differential! equations of mo-
tion of a shell, under suitable smoothness conditions, can be w
ten in coordinate-free form as

“"NT1p5L̇ and “"MT2~N"“ !3 ȳ1 l5Ṙ. (4)

Here, ‘‘T’’ denotes ‘‘transpose’’ and“ is the surface del operator
defined by

dF[dy"“F, (5)

wheredF is the differential of any suitably smooth scalar, vect
or tensor defined onR.

Expressions forN andM in terms of thickness integrals of th
three-dimensional first Piola-Kirchhoff stress tensor are given
Chapter VIII of @1#. These tensors have the following physic
meaning: letnds denote an oriented element of arc onR at y,
where n is a unit vector perpendicular tob at y and ds is arc
length. ThenN"n and M"n are, respectively, the net force an
moment exerted across the strip generated by the differential
ment of areamds asz goes from2H to H by the material lying
on the same side of the strip asn.

The present study is mainly concerned with the inertia term
~4! which are defined as

L ~y,t ![E
2

1

rxGmdz and R~y,t ![E
2

1

r z̄3zGmdz. (6)

In (6)2 ,

z̄~y,z,t ![ x̄2 ȳ (7)

is thedeviationfrom the surface of massM.

3 The Mechanical Power Identity and Strains
Let v andv be a shell velocity and spin, as yet undefined. Th

take the dot product of (4)1 with v, the dot product of (4)2 with
v, add the resulting equations, integrate overR, and use Green’s
Theorem to remove derivatives onN and M. This leads to the
mechanical power identity

W5I 1D, (8)

where

W5E
]R

~v"N1v•M!"vds1E
R

~v"f1v"l!dR (9)

is theexternal mechanical power,
Journal of Applied Mechanics
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R

~v"L̇1v"Ṙ!dR (10)

is the inertial powerand

D5E
R

@N:~“v1“ ȳ3v!1M:“v#dR (11)

is thedeformation power.
To define extensional-shear and bending strains, imagine

motion of the shell at each pointy carrying“yT5“y into “ ȳT by
a rigid-body rotation, represented by therotator Q(y,t), followed
by a stretch, 11E(y,t), where 15“y1bb is the three-
dimensional identity tensor. That is,

“ ȳT5~11E!"Q"“y, E"Q"b50. (12)

~This represents amodifiedversion of the polar decompositio
theorem because, in general,EÞET.) The rotator is defined in
terms ofv—which itself is still undefined—as the unique solutio
of the following differential equation with initial condition:

Q̇5v3Q, Q~y,0!51. (13)

Note thatQ"QT[1 implies that

v315Q̇"QT. (14)

From ~12!,

~“ ȳ"Q!T5QT"“ȳT5~11e!"“y, where e[QT"E"Q.
(15)

Thus, by (13)1 and the identity“ ȳ"(v3Q)[(“ ȳ3v)"Q, the
time derivative of~15! yields

~“yG1“ ȳ3v!"Q5“y"ėT5~12bb!"ėT5ėT. (16)

The last step in this equation follows from (12)2 and (15)2 ,
which imply that b"eT50 and hence thatb"ėT50. With the
definitions

v[yG and n[QT"N, (17)

it follows that

N:~“v1“ ȳ3v!5n:ė. (18)

Because of the factorQT in (15)2 and (17)2 , e and n may be
called a back-rotated extensional-shear strain and stress result-
ant, respectively.

As in @1#, the bending strain tensorK is defined by the spatia
analogue of~14!:

K31[“Q•QT. (19)

As shown in@1#, ~14! and ~19! imply the relation

“v5K̇1K3v. (20)

Note by (13)1 and the identityK"(v3Q)[(K3v)"Q that

“v"Q5~K̇"Q! ˙ . (21)

Thus, with the definitions

m[QT"M and k[K"Q, (22)

it follows from ~21! and ~22! that

M:“v5m:k̇. (23)

The motion of a shell is the pair of vector-tensor function
$ȳ(y,t),Q(y,t)%. Because the nine parameters that define the
thogonal tensorQ are not all independent, it may be convenient to
expressQ in terms of a finite rotation vectorc ([1]), in which
case the motion of the shell may be defined as the pair ofvector-
valued functions$ȳ(y,t),c (y,t)%. Given a suitably smooth mo-
tion, a compatible set of spins and strains may be computed f
(12), (14),and(19).On the other hand, if one wishes to work with
MARCH 2001, Vol. 68 Õ 321
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the extensional-shear and bending strainsE and K (or, alterna-
tively, with e and k), then compatibility conditions must be sati-
fied, as explained in[1].

4 An Elastodynamic Shell
For conciseness, let

L[~L ,R,e,k! and J[~v,v,n,m! (24)

denote, respectively, anargument listand itsconjugate. Then an
isothermal shell iselastodynamicif there exists an energy densit
« depending onL and possibly positiony such that

J"L̇5 «̇~L,y! (25)

and such that the equations of motion~4! are satisfied. These latte
conditions may always be met by a suitable choice of the sur
load p and the surface couplel.

Now suppose that the unknowns composingJ also depend on
L andy only. Then, becauseL̇ may always be assigned any valu
at any fixed point onR and at any fixed time, it follows from~25!
that J5«,L , providing « is a differentiable function ofL. That
is, ~25! implies theconstitutive relations

v5«,L , v5«,R , n5«,e , m5«,k . (26)

This relationdefinesv, whereas the expression forv must be
consistent with (17)1 .

5 A Dynamic Mixed-Energy Density
Despite the popularity of minimum energy formulations both

the finite element literature and from a mathematical standp
~uniqueness and convergence proofs!, there are compelling rea
sons to work with adynamic mixed-energy densityc~L ,v,n,k;y!
instead of with the positive definite energy density«~L ,R,e,k;y!.
First, depending on the external loading and kinematic bound
conditions, a shell may experience~nearly! inextensional bending
In this circumstance, the constitutive relationn5«,e becomes ill-
conditioned. The components of the stress resultant tensor
then, essentially, reactive quantities, best computed from
equations of motion.~Think of the classical theory of plana
curved beams: the axial strain vanishes, by assumption, but no
general, the axial force.! And second, by working with a dynami
mixed-energy density, the a priorikinematic Kirchhoff hypothesis
~‘‘normals to the undeformed reference surface deform with
stretching into normals to the deformed reference surface’’! may
be replaced by the~dynamic! constitutive Kirchhoff hypothesis: c
does not depend on the spinv or the transverse shear stress
sultantQ. The effect, as will be seen, is to make the transve
shearing strain and the rotary inertia vanish,without implying that
Q or v do.

A dynamic mixed-energy density may be defined via the par
Legendre-Fenchel transformation

c~L ,v,n,k;y![ inf
R,e

$«~L ,R,e,k;y!2v"R2n:e%. (27)

If « is differentiable and grows faster thanR ande as these un-
knowns approach infinity~so that the infimum occurs at finit
values ofR ande!, then we have thepartially inverted constitu-
tive relations

v5c,L , R52c,v , e52c,n , m5c,k . (28)

6 Choosing the Kinetic-Energy Density
From ~2!, ~3!, (6)1 , ~7!, and (17)1

L5mv. (29)

Hence, (28)1 implies that the dynamic mixed-energy density h
the form

c5
1
2 m21L "L1 û~v,n,k;y!. (30)
322 Õ Vol. 68, MARCH 2001
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What can be said of thev-dependence ofc? If we mimic
rigid-body dynamics but at the same time recognize that a she
deformable, then we might assume that

R5 l~n,k;y!"v, (31)

where l is a rotary inertia~or moment of inertia! tensor. This
would lead to a dynamic mixed-energy density of the form

c5
1
2 @m21L "L1v"l~n,k;y!"v#1 ũ~n,k;y!]. (32)

The determination ofl, like the determination ofũ must come
from experiments or from some sort of descent from a thr
dimensional energy density.

A simpler approach is to assume that

R5I ~n,k;y!v, (33)

whereI is a scalar rotatory inertia coefficient. Then,

c5
1
2 @m21L "L1I ~n,k;y!v"v1u~n,k;y!#. (34)

This choice may be supported on two grounds: First, in pract
problems involving not-too-thick shells, the rotational momentu
R plays a minor role, as reflected by the magnitude ofl or I which
is O(H2), whereasv is an important, non-negligible kinematica
ingredient. Thus, ignoring the contribution ofR to the energy
density « would imply that v50, i.e., the constitutive relation
(26)2 would be ill-conditioned, whereas ignoring the contributio
of v in ~34! has little consequence,and does not imply thatv50.
And second, as I now show, there always exists some scalarI that
minimizes the difference betweenKext , the exact kinetic energy
per unit area ofR of the shell, and1

2 (m21L "L1I v"v).
By ~2!, ~3!, ~7!, and (17)1 ,

Kext[
1

2E2

1

rxG"xGmdzdR5
1

2S mv"v1E
2

1

rzG"zGmdz D . (35)

Let

z̄5l~y,z,t !u~y,z,t !, where uuu51, (36)

so that

zG5l̇u1lu̇, u"u̇50. (37)

Then,

E
2

1

rzG"zGmdz5E
2

1

r~l̇21l2uu̇u2!mdz, (38)

whereas, by (6)2 , ~36!, and~37!,

R5E
2

1

rl2u3u̇mdz. (39)

The scalar and vector functionsl̇ andl2u3u̇ that appear in the
integrands of~38! and ~39! are independent in the sense that a
signing of just one of these is not sufficient to determinez̄ in ~36!.
Thus, if l̇5g(y,z,t), some given function, then

l5l~y,z,0!1E
0

t

g~y,z,t!dt, (40)

where the first function on the right may be assigned at will. W
l known, the relationl2u3u̇5g(y,z,t), some given function,
can be rewritten as

u̇5V3u, V[l22g. (41)

At any y andz, this is just the equation for a unit vector rotatin
at a variable angular velocityV, so~41! obviously has a solution,
starting at any arbitrary initial conditionu~y,z,0!.

Thus, sincem21L "L5mv"v, it follows from ~35!, ~38!, ~39!
that
Transactions of the ASME
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H Kext2
1

2
~mv"v1I v"v!J 5

1

2E2

1

rl̇2mdz.0, (42)

providing the inertia coefficient is defined as

I[
u*2

1rl2u3u̇mdzu2

*2
1rl2uu̇u2mdz

. (43)

Of course,I cannot be computed from its definition~43! any more
than, say,L can be computed from its definition (6)1 : a formula
for I (n,k;y) is part of the unavoidably approximate description
the dynamic mixed-energy densityc. The simplest approximation
is to set I 5*2

1ruzu2mdz, which is the initial value of the right
side of~43! in a Kirchhoff motion, z̄5Q(y,t)"z(y,z). Other, more
elaborate, approximations may be constructed, especially
shells that undergo significant thickness changes.

7 The „Dynamic… Constitutive Kirchhoff Hypothesis
Perhaps the simplest way to describe this new form of the

pothesis is to introduce, in the tangent plane at each point of
reference surfaceR, a set of independent vectorsya , a51,2.
These vectors need not be associated with a set of surface
dinates. The back-rotated stress resultant and bending strain
sors may then be given the component forms

n5Nabybya1Qabya (44)

and

k5Kabyayb3b1Kayab, (45)

where a repeated index is to be summed from 1 to 2 andya"yb

5db
a , the Kronecker delta. The(dynamic) constitutive Kirchhof

hypothesisis thatc in ~32! depends only onL ,

N~ab![ 1
2~Nab1Nba!, K ~ab![

1
2~Kab1Kba!, (46)

and possiblyy.
If the back-rotated extensional-shear strain and stress co

tensors are put into the analogous component forms,

e5Eabyayb1Eabya (47)

and

m5Mabyb3ya1Mabya , (48)
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then the constitutive relations (28)2,3,4 imply that R50 and

E~ab!52c,N
~ab!, Ea50, M ~ab!5c,K~ab!

, Ma50.
(49)

In coordinate-free form, the constitutive dynamic Kirchhoff h
pothesis is thatc depends only onL , n̄, k̄, and possiblyy, where

n̄[ 1
2~“y"n1nT"“y! (50)

and

k̄[ 1
2~k"“y1“y"kT!. (51)

~Recall that“y5“yT.)

8 Conclusions
I have presented a general nonlinear theory of isothermal, e

todynamic shells which makes assumptions only in the cons
tive relations, which are intrinsically approximate.~They rest ul-
timately on experiments.! In particular, in the equations of motion
of a shell, the inertia terms—which, of course, involve mater
properties—are regarded as given by constitutive relations,
lowing a suggestion made to me independently by Ladeve`ze and
Makowski. Problems of ill-conditioning that can arise in near i
extensional bending are avoided by the introduction of a dyna
mixed-energy density. This last maneuver allows an alterna
form of the Kirchhoff hypothesis to be introduced which avoi
any a priori kinematic constraints imposed by the classic form
the hypothesis.
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Stability of the Shanley Column
Under Cyclic Loading
This paper presents a numerical study of the Shanley column under cyclic loading
model includes intermediate deformation kinematics. The constitutive model is bas
the Dafalias-Popov model. Results for fully reversed, symmetric load or displacem
controlled loading are presented. Under displacement-controlled loading, the mode
exhibit a transient response which takes it away from its initial configuration, but
response eventually reaches a stable cycle. Under load-controlled loading, the mod
either reach a limit cycle or develop a limit load instability that causes collapse.
responses that result in collapse are imperfection sensitive. In addition, the respon
the model is also sensitive to the amplitude of the applied loading cycles.
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Introduction
Many metal structures currently in service are subjected to

clic loading. Examples include structures located in seismic
active areas, offshore structures excited by wind and waves, s
tures subjected to cyclic thermal loading, etc. In some ca
mostly under off-design conditions, the amplitude of the cyc
loading may cause repeated yielding of the material. It is w
known that, in those cases, structural degradation is possible
can lead to buckling and collapse. Bertero and Popov~@1#! pre-
sented one of the earliest demonstrations of such behavior in
clically loaded cantilever beams. Later studies of the response
stability of structural members under cyclic loading~@2–7#! have
shown that structural degradation and collapse under cyclic lo
affect a wide range of structural members. In many of these c
the cause of degradation is the progressive growth of the buck
mode, which eventually localizes and leads to collapse. Mos
the studies conducted have been experimental. Attempts to
duct analytical studies to capture experimentally measured be
ior ~@8,9#! have been successful in some cases, but only a
overcoming significant challenges in the area of constitutive m
eling. The main difficulty has been the accurate prediction
ratcheting under general, multiaxial loading conditions that
present in many of the structural members studied, as show
~@10–12#!. In view of this state of affairs, one avenue to analy
cally explore the stability of structural members subjected to
clic loading is to consider the response of simplified models.

The objective of the present work is to study the response
relatively simple structural model subjected to cyclic load or d
placement controlled loading in order to study the degradation
collapse mechanism resulting from the growth in amplitude of
buckling mode. The model considered was first proposed
Shanley~@13#! to study column plastic buckling and is shown
Fig. 1~a!. All members are rigid, except for the elastic-plas
springs, or links, that support the model at pointsB and C. The
state of stress in the links is uniaxial. Due to the importance
ratcheting in the calculated response, the cyclic plasticity mo
employed has to have shown success in predicting ratcheting
der uniaxial stress. Such a model will be discussed in more d
in the next section. The main concern of the investigation is
stability of the model under fully reversed loading, and how it
related to the geometric and loading parameters imposed.
type of loading has been employed in several experimental stu

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ma
20, 2000; final revision, June 28, 2000. Associate Editor: S. Kyriakides. Discus
on the paper should be addressed to the Editor, Professor Lewis T. Wheeler, D
ment of Mechanical Engineering, University of Houston, Houston, TX 77204-47
and will be accepted until four months after final publication of the paper itself in
ASME JOURNAL OF APPLIED MECHANICS.
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of members under bending and hence is employed here. Th
vestigation consists of numerical experiments on the model
various geometries and loading conditions and analysis of the
sults.

Formulation
The Shanley column, shown in Fig. 1~a!, consists of two rigid

members that deflect in the plane. The vertical memberOA has
lengthL and connects to the horizontal memberBC of lengthb at
point O. OA and BC remain perpendicular at all times. Elastic
plastic links of lengthh and unit cross-sectional area support t
structure at pointsB andC.

Figure 1~b! shows the model in its deflected configuration. T
point of application of the external loadN is at A. The line of
action of N remains vertical at all times. The model has tw
degrees-of-freedom: the vertical displacement of pointO (u) and
the rotation~u!. The initial configuration can be imperfect. Th
imperfection consists of initial values ofu andu given byuo and
uo , respectively. For the range of parameters considered in
investigation,u andu remain relatively small, so an intermedia
class of kinematics is sufficient to capture the behavior of
model.

The equilibrium equations of the model can be easily obtain
from the free-body diagram in Fig. 1~b!. They are

F11F25N

r.
ion
part-

92,
theFig. 1 „a… Shanley column, „b… deflected configuration and

free-body diagram
001 by ASME Transactions of the ASME
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F12F252N
L

b
u. (1)

The strain in each link is given by

e15
h̄12h̄1o

h̄
, e25

h̄22h̄2o

h̄
, (2)

where the bar indicates normalization with respect toL(h̄
5h/L, etc.). Here,

h̄15h̄1ū2
b

2L
u, h̄25h̄1ū1

b

2L
u, (3)

and h̄1o and h̄2o are the values ofh̄1 and h̄2 due to the initial
imperfection. The horizontal and vertical deflections of point
are given by

ūa5ū2u2/2, v̄a5u, (4)

respectively. It is clear that the model contains two geome
parameters,h̄ andL/b.

A second nonlinearity in the model is due to the constitut
relation of the links. It desirable to employ a plasticity model th
has shown success in predicting uniaxial ratcheting in actual
terials. The Dafalias-Popov cyclic plasticity model~@14,15#! gov-
erns the constitutive behavior of the links. This model is based
classical incremental plasticity with kinematic hardening. In t
uniaxial setting, as applicable in this work, the basic characte
tics of the model can be explained with the help of the stre
plastic strain diagram in Fig. 2. As is customary, the strain inc
ment is decomposed into an elastic and a plastic part

de5dee1deP (5)

where

dee5
ds

E
(6)

andE is Young’s Modulus.
The stress-plastic strain response of the material is boun

between the two linesAB and CD, which are called the
‘‘bounds.’’ In the simplest case, the bounds are linear with slo
Eo

P . The relation between the plastic strain increment and
stress increment is given by

deP5
ds

Et
P (7)

Fig. 2 Plasticity model parameters
Journal of Applied Mechanics
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whereEt
P is the plastic tangent modulus. At a given point, s

point a in the figure,Et
P is calculated based on the distancesd

betweena and the bound andd in between the previous yield poin
and the same bound. The plastic tangent modulus is given by

Et
P5Eo

P1hS d

d in2d D (8)

whereh controls the shape of the curve and is given by

h5
a

11bS d in

2sb
D m . (9)

If the stress-strain curve touches a bound, thenEt
P5Eo

P . All pa-
rameters of the model can be evaluated from two uniaxial str
strain curves.

Hassan and Kyriakides@10# introduced a modification to the
model by cutting the bounds at the pointsA, B, C, andD instead
of letting them extend to infinity as in the original model. If th
absolute value of the plastic strain exceeds the valuee t

P , the
pointsA, B, C, andD translate along the strain axis in the dire
tion of the strain increment at the same rate as the plastic st
Using this modification, they showed that the model could ac
rately predict experimentally measured uniaxial ratcheting.

A simple plastic bifurcation analysis of the perfect syste
yields the bifurcation buckling load

Nc52
Et

2

~b/L !2

~h/L !
(10)

whereEt is the instantaneous tangent modulus given by

1

Et
5

1

E
1

1

Et
P . (11)

The negative sign indicates that the buckling load is compress
If Et is not constant,~10! must be solved by trial and error. Th

corresponding buckling mode isû50 andû arbitrary.
The response of the column under load control can be obta

by prescribing the external loadN and then solving Eqs.~1!–~3!
using Newton’s method. Alternatively, the response under d
placement control can be obtained by prescribing the displa
mentua . In this case, the first of Eq.~4! must also be included in
the solution procedure.

It is understood that this simple, two-degree-of-freedom mo
cannot account for all aspects of the measured response of a
structural members, such as localization-driven collapse, colla
under displacement-controlled loading, and the degradation du
prebuckling deformations observed in circular tubes under be
ing ~@2,5,8#!. It provides, however, a simple way to simulate th
growth of the amplitude of buckling modes under cyclic loadi
as has been observed, for example, in tubes of square cross
tion ~@6#! and T-beams~@7#! under cyclic bending.

Results1

The investigation of the behavior of the model was carried
as a series of numerical experiments by varying the geometric
loading parameters. The material properties are those of ca
steel 1026 used in~@10#! and are listed in Table 1. These prope
ties remained fixed in all cases presented here. Note that the
load of the perfect model isNy52sy . The corresponding dis-
placement isūy5syh̄/E.

The results can be divided into three cases depending on
loading conditions: monotonic response, cyclic response un
displacement control, and cyclic response under load contro
all cases consideredh̄50.01, so the only geometric paramet

1Preliminary results of the response of the model were presented in@16#.
MARCH 2001, Vol. 68 Õ 325
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varied wasL/b. Three values ofL/b ~50, 100, and 150! were
chosen to illustrate the various aspects of the response of
model.

Monotonic Response
Shanley developed his model to analytically demonstrate

the critical load calculated based on the tangent modulus re
sents the lowest load at which lateral deflection of a perfe
elastic-plastic column becomes possible. Furthermore, he sho
that the load supported by the column increases through the
cal point as the response follows the stable branch.

Table 2 lists the bifurcation loads and the corresponding a
displacements of the three models considered, as calculated
Eq. ~10!. Both quantities are normalized by the correspond
yield quantities. It is clear that asL/b decreases, bifurcation oc
curs further into the plastic range of the material.

The post-buckling behavior of the model can be studied
introducing a small initial imperfection in the form of an initia
rotationuo . Figure 3~a! shows the load-axial deflection (N2ua)
responses calculated for the three values ofL/b considered with
an initial deflection ofuo51024 rad. The loads are normalized b
the absolute value of the bifurcation loadsuNcru while the deflec-
tions ua are normalized by the absolute value of the bifurcat
deflectionsuucru. In all cases the response is characterized b
limit load instability. The limit loads occur at values ofN/uNcru
50.978, 0.957, and 0.928 forL/b550, 100, and 150, respec
tively. Note that asL/b decreases theN-ua curves exhibit more
softening prior to reaching the limit load. This is due to the
crease inNcr /Ny as shown in Table 2. In other words, colum

Table 1 Material properties

E, GPa
~ksi!

Eo
P , GPa
~ksi!

sy , MPa
~ksi!

sb , MPa
~ksi!

a, GPa
~ksi! b m e t

P , %

181 1.38 131 269 490 27 2 2.35
~26,320! ~200! ~19! ~39! ~71,100!

Table 2 Brifurcation loads and displacements for three values
of L Õb considered

L/b Ncr /Ny ua /uy

50 21.93 23.16
100 21.58 21.84
150 21.22 21.25
326 Õ Vol. 68, MARCH 2001
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with lower L/b have a more severe plastic state at the limit loa
Figure 3~b! shows the corresponding load-rotation curves. N
that the values ofu at the limit load are all below 0.001 rad so th
the assumption of intermediate rotations is justified. Furt
analysis indicated that, as expected, the limit loads and the co
sponding displacements are moderately imperfection sensitiv

Cyclic Loading: Displacement Control
Under displacement control, the prescribed variable is the v

tical deflection of the tip of the column,ua in Fig. 1. The first case
to be discussed is that of a model withL/b550 under symmetric
loading aboutua50 and with amplitudeũa /uucru50.95 ~ũa indi-
cates the amplitude of the cycle inua!. Figure 4~a! shows the
N2ua response. The initial imperfection isuo51024 rad. This
imperfection will be the default value for the rest of the pap
unless stated otherwise. The loading cycles start by compres
the column. Note that, initially, the response goes through a tr
sient stage where the loops are shifting but eventually approa
a repeatable, or limit, cycle. The reason for the shifting can
seen in Fig. 4~b!, which shows theN-u response. It is clear tha
the model progressively leans so that the peak value ofu in each
cycle increases. This causes softening in compression. Harde
in tension develops from the increase in the width of the loop

This type of displacement controlled loading imposes a ki
matic constraint on the system which keeps the lateral deflec
from growing too large. As a result, it can be expected that
system will be stable in the long term even though the trans
response takes the system away from its unloaded configura
The mechanics of how stability is achieved at the material le
can be explained by looking at the stress-strain~s-«! response of
the two elastic-plastic links in Figs. 5~a! and ~b!. As the lateral
deflection increases, the model leans on link 1, hence it ratche
the negative strain direction. Link 2 ratchets in the positive str
direction. Note that the rate of ratcheting decreases with cyclin
both links. Ratcheting can be slowed down in two manners: b
decrease of the mean stress or by a decrease in the amplitu
the stress cycles. It is clear that in link 1 the mean stress decre
~in absolute value! during the transient period, while in spring
the mean stress increases significantly, but the amplitude of
cycles decreases very quickly simultaneously. The net effec
that ratcheting stops after sufficient cycling. As a final detail, ca
ful consideration of the stress-strain loops reveals that the m
stress in link 1 does not decrease all the way to zero when ra
eting stops. This arrest of ratcheting with nonzero mean stress
characteristic of the Dafalias-Popov model. Should a differ
plasticity model which requires zero mean stress to stop ratche
Fig. 3 Monotonic response, „a… load-axial deflection response of three models, „b… cor-
responding load-rotation response
Transactions of the ASME
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Fig. 4 Cyclic response under symmetric displacement control for a model with
L ÕbÄ50, „a… load-axial deflection response, „b… corresponding load-rotation re-
sponse
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be used, the mean stress in link 1 would have to decrease to
Similarly, link 2 stops ratcheting even though some plastic de
mation occurs in each cycle and the mean stress is relatively h

The effect of varying the amplitude of the loading cycle can
seen in the plot in Fig. 6. It shows the peak value ofu (up) in each
cycle as a function of the number of cycles. As expected,
response eventually stabilizes in all cases. The stable value oup
and the rate at which it is approached depend on the amplitud
the cycle. The higher the amplitude, the larger the stable value
the faster it is approached. The imperfection sensitivity of
response of the model was also studied by consideringuo

51025, 1024, and 1023. The results indicate that, in this cas
the stable value ofup is relatively insensitive to the amplitude o
the initial imperfection.

Figures 7~a! and ~b! show the load-axial deflection and load
rotation plots for a model withL/b5100 loaded atũa /uucru
50.95. As in the previous case, the response approaches a
cycle. The load-axial deflection plot looks very similar to the o
in the previous case. Note that limit loads occur in the first f
several cycles, but they are inconsequential under displacem
control. The load-rotation plot shows significant differences wh
compared to that in Fig. 4, the most obvious being that the sig
u in all loops is opposite to that ofuo . This reversal inu occurs
frequently in models withL/b5100 and 150. The reason for th
reversal can be seen in Fig. 8, which shows the stress-strain
tories of both links for the first cycle. At the first reversal, ind
cated bya, link 1 has reached a higher value of stress and st
than link 2, as expected. Upon unloading and reverse loading,
1 yields before link 2 due to the Bauschinger effect and soft
significantly more during the rest of this cycle segment. T

Fig. 5 Stress-strain response for the case in Fig. 4, „a… link 1,
„b… link 2
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causes link 1 to develop a larger strain at pointb. The strain
difference between the links is sufficient to overcome the ini
imperfection and accommodate the change of sign ofu. In the
case shown in Fig. 4 forL/b550 the stress-strain history is sim
lar to this point, but the difference between the strains in the lin
is not sufficient to overcome the initial imperfection and the si
of u does not change. During reloading fromb to c, link 2
develops much larger strain than link 1 and hence pushes
model further in the negativeu-direction. From this point on,u
remains negative as shown in Fig. 7~b!.

Further investigation into cases withL/b550, 100, and 150,
imperfections of 1025, 1024 and 1023, and various cycle ampli-
tudes indicated that the transient responses of the models are
ied. The long term behavior is stable, but the long term values
up depend on the parameters listed above. In general, the beh
of the model becomes more predictable for lower values ofL/b,
larger initial imperfections and larger loading amplitudes. In the
cases, the plastic state in the links is more severe, which m
effectively ‘‘locks’’ the deflection of the model in a more predic
able direction.

Fig. 6 Peak values of u in each cycle as a function of cycle
number for various cycle amplitudes under displacement
control
MARCH 2001, Vol. 68 Õ 327
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Fig. 7 Cyclic response under symmetric displacement control for a model with
L ÕbÄ100, „a… load-axial deflection response, „b… corresponding load-rotation re-
sponse
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Cyclic Loading: Load Control
The second mode of cyclic loading considered is load cont

whereN is the prescribed variable. As in the case of displacem
control, the cycles considered are symmetric aboutN50. The
amplitude of the cycles, denoted byÑ, necessarily has to be

Fig. 8 Stress-strain histories for the first cycle of the response
shown in Fig. 7
CH 2001
ol,
ent

smaller than the limit loads presented in Fig. 3, in contrast w
displacement control where the amplitude of the cycle could
larger than the displacement corresponding to the limit load un
monotonic loading. In parallel with the discussion of displacem
controlled loading, the first case considered is one where sig
cant plastic deformation takes place.

Figure 9 shows the response of a model withL/b550 with a
load amplitudeÑ/uNcru50.8. TheN-u response, shown in Fig
9~a! is significantly different from the one obtained under d
placement control. In this case the loops change slowly at the
but progressively ratchet in the compressive direction. The ra
eting accelerates as cycling progresses and becomes relativel
for the last few cycles. TheN2u response, shown in Fig. 9~b!,
shows that ratcheting inu is also present. In fact, a small amou
of the deflectionua is due to the leaning of the model. Ratchetin
in u also starts at a slow rate and accelerates throughout the l
ing history, moving away fromuo . Also, note that the instanta
neous stiffness of the model at the compressive load reversal p
decreases with cycling. The calculations stop when the solu
procedure diverges as the model approaches a limit load inst
ity during the last cycle. At this point the model can no long
support the load required by the loading history, and it collaps

The model exhibits two possible instabilities. The first, which
also present in the displacement controlled case in Fig. 4 is
departure of the configuration of the model away from the init
one. The speed of departure, however, is significantly differe
Under displacement control, the departure is initially fast and p
gressively slows down until it stops. Under load control, the d
Fig. 9 Cyclic response under symmetric load control for a model with L ÕbÄ50, „a…
load-axial deflection response, „b… corresponding load-rotation response
Transactions of the ASME
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parture is initially slow and progressively accelerates. The sec
instability is due to the fact that, under load control, the kinema
constraint present in the displacement control case does not e
Therefore, bothu andu may attain relatively large values leadin
to the collapse of the model.

Figure 10 shows thes-« response of the two links for the cas
shown in Fig. 9. As cycling progresses, the model leans on lin
~Fig. 10~a!! and hence it ratchets in the compressive directi
Note that both the stress amplitude and the absolute value o
mean stress increase with cycling. These increases have the

Fig. 10 Stress-strain response under symmetric load control
for the case in Fig. 9, „a… link 1, „b… link 2

Fig. 11 Response history under load control for a model with
L ÕbÄ50 for different load amplitudes, „a… peak values of verti-
cal displacement in each cycle as function of cycle number, „b…
peak values of u in each cycle as function of cycle number
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of accelerating ratcheting in this link. The response of link
shown in Fig. 10~b!, exhibits a more moderate response within
smaller strain range.

The peak values ofua andu in each cycle, shown in Fig. 11 a
a function of number of cycles, indicate that asÑ decreases the
initial rates of accumulation ofua and u decrease and that th
number of cycles required to induce the limit load instability i
creases. Note that the range ofÑ which could lead to instability is
bounded by the limit load above and approximately by the yi
load of the perfect model below. In this case, 0.52<Ñ<0.978.
Therefore, the amplitude range presented in the figure is ra
small, yet the number of cycles required to induce the limit lo
span one order of magnitude. This indicates that cycle count a
limit load instability is very sensitive to the amplitude of the loa
cycle. Indeed, forÑ/uNcru50.65 the limit load occurs at 2.7
3104 cycles.

Figure 12 shows peak values ofua and u in each cycle for a
model withL/b5100. The cases considered here show a rema
able difference when compared with the cases in Fig. 11.
three cases with higherÑ/uNcru develop a limit load instability as
discussed previously. The three cases with lowerÑ/uNcru do not.
The difference can be attributed to the material nonlinearity as
ciated with the Bauschinger effect along the lines of the disc
sion of the case in Fig. 8. For the cases with lowerÑ/uNcru, the
responses tend to limit cycles. This was verified by carrying
calculations to a much higher number of cycles than shown in
figure. For example, Fig. 13 shows plots of the peak values oua
and u in each half-cycle for a range of 4000 cycles wh
Ñ/uNcru50.7. It is clear that while the range ofua in each cycle

Fig. 12 Response history under load control for a model with
L ÕbÄ100 for different load amplitudes, „a… peak values of ver-
tical displacement in each cycle as function of cycle number,
„b… peak values of u in each cycle as function of cycle number
MARCH 2001, Vol. 68 Õ 329
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remains nearly constant, the range ofu decreases continuousl
until the 2110th cycle. At this point the loop flips and, by th
2150th cycle, all values ofu in the cycle are negative. The rang
of u subsequently increases but now the cycles approach a sta
ary condition.

Fig. 13 Response in terms of peak values of u and u in each
half-cycle for a model with L ÕbÄ100 and ÑÕzNcr zÄ0.70 under
load control

Fig. 14 Response history under load control for a model with
L ÕbÄ150 for different load amplitudes, „a… peak values of ver-
tical displacement in each cycle as function of cycle number,
„b… peak values of u in each cycle as function of cycle number
330 Õ Vol. 68, MARCH 2001
e
e
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Figure 14 shows peak values ofua and u in each cycle for a
model withL/b5150. The range of possible values ofÑ is most
restricted in this case because, for the perfect model, yield
occurs only forÑ/uNcru.0.82. The plots in the figures show tha
the responses in all cases considered did not march toward
load instabilities. Therefore, the responses were stable in the
term.

Imperfection sensitivity is another important aspect of the
sponse of the model when under load control. Figure 15~a! shows
plots of up versus number of cycles for three values ofuo one
order of magnitude apart. In these casesL/b550 and Ñ/uNcru
50.77. It is clear that the rate of accumulation ofup and number
of cycles to collapse are sensitive to the initial imperfection. F
ther analysis indicates that the number of cycles to collapse c
tinues to increase as the imperfection amplitude decreases.
trend continued down to amplitudes of 10218. The number of
cycles to collapse became a random variable for smaller im
fections but never exceeded 2000 cycles. This effect is most lik
due to numerical effects that surface when the imperfection
very small. It, however, may indicate that for given material, ge
metric and loading conditions, a maximum possible number
cycles to collapse exists due to unavoidable perturbations.

Figure 15~b! shows similar plots for a model withL/b5100
andÑ/uNcru50.82. The value ofÑ was chosen to be close to th
boundary between long-term stable and unstable responses in
12. The results indicate that the initial imperfection can also h
an effect deciding whether cycling will drive the model to a lim
cycle or to collapse.

Fig. 15 Response history in terms of peak u values as func-
tion of cycle number under load control for different values of
initial imperfection, „a… L ÕbÄ50, „b… L ÕbÄ100
Transactions of the ASME
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Conclusions
This paper discussed the elastic-plastic stability of the Sha

column model when subjected to fully reversed cyclic loading
either displacement or load control. The model can exhibit t
instabilities: the first is a progressive departure from the ini
configuration of the model. It can occur under load and displa
ment control. Under displacement control the model approach
limit cycle, whereas under load control the departure from
initial state may accelerate in some cases. The second is a
load instability that under load control results in the collapse
the model. The results indicate, however, that asL/b increases
and Ñ decreases, the model may reach a stable cycle even u
load control. Another aspect of the results worth emphasizin
that, in addition to imperfection sensitivity, the model exhib
load amplitude sensitivity. For example, under load control,
number of cycles to collapse strongly depends on the amplitud
the cycle.

It is clear from the results that the response of even suc
simple model is complex and rich in features. The nature of
response can be affected by the parameters varied in this s
namely the amplitude of the loading cycle,L/b and the amplitude
of the initial imperfection. Other parameters kept constant in t
investigation that can be of significant importance in actual str
tures and that can affect the response and stability of the m
include the presence of mean values of displacement or load in
loading cycles and variations in the material properties.

The number of variables that can affect the stability of act
structures can obviously be much larger than in the present mo
Furthermore, as the complexity of the structure increases,
possible to have more than one load, multiaxial states of str
different stress histories at different points, possible localizat
instabilities, collapse under displacement control, etc. These
tors increase the complexity of the response well above what
discussed in this paper and, coupled with current difficulties
ratcheting prediction, make quantitative predictions of the dev
opment of structural instabilities under cyclic loading very dif
cult to obtain. Therefore, experimentation remains an esse
tool that must accompany analytical studies of the response
stability of actual structures or structural elements under cy
Journal of Applied Mechanics
ley
in
o

ial
ce-
s a

he
limit
of

nder
is

ts
he
e of

h a
the
udy,

his
uc-
del
the

al
del.
t is
ess,
ion
fac-
was
in
el-
-
tial
and
lic

loading. The results from the simple model presented here d
onstrate that the combination of geometric nonlinearities a
ratcheting at the material level can lead to the growth of buckl
modes and induce collapse under cyclic loading as has been
served experimentally.
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Modal Analysis of Ballooning
Strings With Small Curvature
During the manufacture and transport of textile products, yarns are rotated at high sp
The surface of revolution generated by the rotating yarn is called a balloon. The dyn
response of the balloon to varying rotation speed, boundary excitation, and aerodyn
disturbances affects the quality of the associated textile product. Resonance, in parti
can cause large tension variations that reduce product quality and may cause yarn b
age. In this paper, the natural frequencies and mode shapes of a single loop balloo
calculated to predict resonance. The three-dimensional nonlinear equations of motio
simplified under assumptions of small displacement and quasi-static axial motion.
linearization, Galerkin’s method is used to calculate the mode shapes and natura
quencies. Experimental measurements of the steady-state balloon shape and the fi
natural frequencies and mode shapes are compared with theoretical predictions.
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Introduction
Textile processes such as spinning, twisting, and unwind

involve the rotation of yarns at high speed. To an inertial o
server, the rotating string blurs to produce a balloon or surfac
revolution formed by the rotating yarn. Relative to a frame th
rotates with the string, a steady balloon is stationary. For
heavy yarns with negligible air drag studied in this research,
steady yarn displacement resembles a planar catenary relati
the rotating frame. The dynamic response of the balloon to va
ing rotation speed, boundary excitation, and disturbances gov
the quality of the textile product. In unwinding~@1#!, for example,
the yarn rotates around a stationary package as it is axially w
drawn. The back and forth boundary motion of the yarn on
package causes varying balloon rotation speed~@2#!, introducing
both axial and transverse disturbances. Resonance can cause
tension variations that reduce product quality and may cause
breakage.

Recent studies on ballooning strings have shown a variet
interesting dynamic behaviors. The numerical studies by B
et al. @3# and Fraser@4# and theoretical and experimental studi
by Zhu et al.@5# show balloons can have multiple shapes for fix
parameters due to the highly nonlinear governing equations.
linear vibration analysis by Zhu et al.@5# captures the experimen
tally observed jump phenomena and flutter instabilities of lig
weight yarns with significant air drag. The number of loops in t
balloon shape increases with increasing string length or decr
ing tension. Linear dynamic investigations by Zhu et al.@5# and
Stump et al.@6# show that single loop balloons are stable, one a
a half loop balloons are divergent unstable, and double loop
loons may be flutter unstable for sufficiently low air drag. Z
et al. @7# also show string extensibility has limited effect on ba
loon stability for most textile yarns. The limit cycling of doubl
loop balloons is studied analytically and numerically by Zhu et
@8# and Clark et al.@9#, respectively.

In this paper, the natural frequencies and mode shapes
single loop balloon are calculated to predict resonance. The th
dimensional nonlinear equations of motion are simplified
small steady-state displacement and vibration assumptions~@10#!,

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Se
7, 1999; final revision, Aug. 29, 2000. Associate Editor: A. A. Ferri. Discussion
the paper should be addressed to the Editor, Professor Lewis T. Wheeler, Depa
of Mechanical Engineering, University of Houston, Houston, TX 77204-4792,
will be accepted until four months after final publication of the paper itself in
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that have been experimentally shown to be accurate for c
analysis~@11#!. Axial vibration is assumed to propagate instan
neously~i.e., quasistatically! ~@12#!. Finally, the equations are lin
earized and Galerkin’s method is used to calculate mode sh
and natural frequencies. Experimental measurements of
steady-state balloon shape and the first two natural frequen
and mode shapes are compared with theoretical predictions.

Equations of Motion

Nonlinear Equations. Figure 1 shows a schematic diagra
of the ballooning string system. The string is modeled as a p
fectly flexible one-dimensional continuum pinned at the top a
attached to an eyelet of lengthD at the bottom. The bottom eyele
is separated by perpendicular distanceH from the top eyelet and
rotates with angular velocityV. The unstressed, steady-state, a
final configurations are given byx0, x i , andx f , respectively. The
rotation speed and yarn mass per unit lengthrA are assumed to be
sufficiently large so that gravitational and aerodynamic forces
be neglected, respectively.

The steady-state displacementRi(S,T)5R1e11R2e2 locatesx i

whereS is the arc length coordinate measured along the ste
state configuration ande1 , e2 , and e3 are Cartesian coordinate
rotating aboute1 with angular velocityV. The relative displace-
ment between the final configurationx f located byRf(S,T) and
the steady-state configuration is

U~S,T!5Rf2Ri5U1l11U2l21U3l3 , (1)

wherel1 , l2 , and l3 are the unit tangential, normal, and binomi
vectors, respectively.

Following Zhu et al.@5#, we obtain the nonlinear strain

«5
1

2
~U1,S

2 1U2,S
2 1U3,S

2 !1
1

2
K2~U1

21U2
2!1K~U1U2,S

2U2U1,S!1U1,S2KU2 , (2)

whereK5AR1,SS
2 1R2,SS

2 is the steady-state curvature and comm
subscripts indicate partial differentiation. Note that Eq.~2! ne-
glects the strain between the initial and steady-state config
tions. This inextensibility assumption implies

U]Ri

]SU51 (3)

and is appropriate for most textile yarns because of their h
axial stiffness~@7#!.

The field equations are

t.
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rAU1,TT12rAbVU3,T2rAV2~b2U11bR22abU2!

2@~P1EA«!~11U1,S2KU2!# ,S

1K~P1EA«!~U2,S1KU1!50 (4)

rAU2,TT22rAaVU3,T2rAV2~a2U22aR22abU1!

2@~P1EA«!~U2,S1KU1!# ,S

2K~P1EA«!~11U1,S2KU2!50 (5)

rAU3,TT22rAV~bU1,T2aU2,T!2rAV2U3

2@~P1EA«!~U3,S# ,S50 (6)

whereP(S) andEA are the string steady-state tension and lon
tudinal stiffness, respectively. The direction cosinesa5e1• l1
5dR1 /dS andb5e2• l15dR2 /dS. The boundary conditions ar

R~0!50, R1~L !5H, R2~L !5D,
(7)

U~0,T!50, U~L,T!50,

whereH is the balloon height.
To simplify the analysis, the following nondimensional va

ables are introduced:

Fig. 1 Schematic diagram of a ballooning string system
Journal of Applied Mechanics
gi-

i-

U5uL, S5sL, T5ft, R25r 2L, H5hL, p5
P

Pe
,
(8)

f5ArAL2

Pe
, v5Vf, l5

EA

Pe
, D5dL, K5

k

L
,

where Pe5P(0). Substitution of Eq.~8! into Eqs.~4!–~6! pro-
duces

u1,tt12bvu3,t2v2~b2u11br 22abu2!2@~p1l«!~11u1,s

2ku2!# ,s1k~p1l«!~u2,s1ku1!50 (9)

u2,tt22avu3,t2v2~a2u22ar 22abu1!2@~p1l«!~u2,s

1ku1!# ,s1k~p1l«!~11u1,s2ku2!50 (10)

u3,tt22v~bu1,t2au2,t!2v2u32@~p1l«!u3,s# ,s50 (11)

The boundary conditions Eqs.~7! become

u~0,t !5u~1,t !50,

r 2~0!50, r 2~1!5d. (12)

The strain« has the same form as Eq.~2! with lowercase letters.
Ordering of the system variables as follows:

u15e2u1 , u25eu2 , u35eu3 , k5ek, (13)

wheree is a small parameter, produces the simplified strain eq
tion

«5u1,s1
1

2
~u2,s

2 1u3,s
2 !2ku21O~e4!. (14)

Fig. 2 Experimental setup
MARCH 2001, Vol. 68 Õ 333
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Fig. 3 The dependence on the nondimensional rotation speed v on the nondimensional balloon
height h and eyelet length d . Theoretical solid „dÄ0.01…, dashed „dÄ0.038… and dash-dotted „d
Ä0.1… curves and experimental data „* … are shown.
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Assumingu1 is O(e2) agrees with the inextensibility assumptio
Eq. ~3!. The remaining variables are ordered,

r 25er 2 , b5eb, a51, l5l/e. (15)

Substitution of Eqs.~13! and ~15! in Eqs.~9!–~11! produces

@p1l«# ,s501O~e2! (16)

u2,tt22vu3,t1v2~r 22u2!2@~p1l«!u2,s# ,s2lk«2kp

501O~e3! (17)

u3,tt12vu2,t2v2u32@~p1l«!u3,s# ,s501O~e3!. (18)

We have assumed that both the steady-state and relative disp
ments are small. This produces the simple form of Eq.~16! and
subsequent quasi-static elimination ofu1(s,t).

Steady-State Equations. Solutions of Eqs.~16!–~18! de-
pends on the steady-state tensionp, curvaturek, and displacemen
r 2 . The steady-state equations result from substitution ofu15u2
5u35«50 in the field Eqs.~16!–~17! to produce

p,s50 (19)

v2r 22kp50. (20)

Integration of Eq. ~19! yields p51. Substitution of k5r 2,ss
(r 1,ss5a ,s50) in Eq. ~20! produces

r 2,ss1v2r 250 (21)

with a solution satisfying the boundary conditions~12! as follows:

r 2~s!5
d sinvs

sinv
(22)
68, MARCH 2001
n

lace-

k~s!5
dv2 sinvs

sinv
.

In this paper, only single loop balloons withv,p are studied,
ensuringk.0.

The balloon height is related to the steady-state displacem
using inextensibility Eq.~3! as follows:

h5E
0

1

A12r 2,s
2 ds5E

0

1S 12
1

2
r 2,s

2 Dds1O~e4!. (23)

Substitution of Eq.~22! into Eq. ~23! yields

h512
vd2

4 sinv S cosv1
v

sinv D . (24)

Equation~24! shows that changingV while keepingH, L, andD
fixed does not changev. The steady-state tensionPe increases
quadratically with speed to makev constant. In the experiments
we changev by changingH while maintainingL, D, andV con-
stant.

Quasi-static Equations of Vibration. After subtraction of
the steady-state solution from Eq.~16!, we have

« ,s50. (25)

Thus, vibration in the axial direction is neglected under the
sumption that the yarn stretches in aquasi-staticmanner~@12#!.
Integration of Eq.~25! and substitution into Eq.~14! yields

«5
1

2
~u2,s

2 1u3,s
2 !1u1,s2ku25g~ t !, (26)
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Fig. 4 Theoretical „dash-dotted and experimental data „* … and best fit line „solid … steady-state in-
plane displacement: „a… vÄ0.6p, dÄ0.038, gÄ400; „b… vÄ0.9p, dÄ0.038, gÄ400. Experimental
data correspond to circled points in Fig. 3.
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whereg(t) is an arbitrary function of time. Integration and use
the boundary conditions~12! give

u1~s,t !5E
0

sFku22
1

2
~u2,s

2 1u3,s
2 !Gds1g~ t !s, (27)

where

g~ t !5E
0

1F1

2
~u2,s

2 1u3,s
2 !2ku2Gds5«~ t !. (28)

Substitution of Eq.~28! into Eqs.~17!–~18! and elimination of the
steady-state terms produces

u2,tt22vu3,t2v2u22lk«2u2,ss~11l«!50 (29)

u3,tt22vu2,t2u3v22u3,ss~11l«!50. (30)

Canceling nonlinear terms in Eqs.~29! yields the linearized equa
tions

u2,tt22vu3,t2v2u21lkE
0

1

ku2ds2u2,ss50 (31)

u3,tt12vu2,t2v2u32u3,ss50. (32)

Modal Analysis. Galerkin’s method is used for numerica
balloon vibration analysis. The displacements are representedn
term separable series of the form

u2~s,t !5(
i 51

n

a2i~ t !sin~ ips! (33)

u3~s,t !5(
j 51

n

a3 j~ t !sin~ j ps! (34)
plied Mechanics
f

l
by

that satisfy the pinned boundary conditions. Substitution of E
~33! and~34! into Eqs.~31! and~32! and application of Galerkin’s
method provide the discretized equation of motion

ä1Gȧ1Ka50 (35)

where the coordinate vector

a5@a21 .. a2n a31 .. a3n#T.

The stiffness matrixK5K11K2 with

K15FK10 0

0 0G , K10~ i , j !5
~21! i 1 j2i j p2ld2v4

@v22~ ip!2#@v22~ j p!2#
,

K25Fdiag$~ ip!2%2v2I 0

0 diag$~ ip!2%2v2I G , (36)

and the gyroscopic matrix

G5F 0 22vI

2vI 0 G . (37)

The eigenvaluesln of the state matrix associated with Equatio
~35!

A5F 0 I

2K 2GG (38)

are determined numerically using MATLAB.

Experiments

Experimental Setup. The experimental setup is shown i
Fig. 2. The string attaches between a rotating eyelet on a four
linkage (D50.0139 m) and an inductive tension sensor moun
MARCH 2001, Vol. 68 Õ 335
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Fig. 5 Theoretical „solid … and experimental „* … natural frequencies „dÄ0.038, gÄ400…. Mode
shapes „1st solid, 2nd dash-dotted, 3rd dashed …: „a… vÄ0.3p, „b… vÄ0.6p, „c… vÄ0.9p.

Fig. 6 Theoretical „dash-dotted … and experimental „solid … mode shapes „vÄ0.9p, dÄ0.038,
gÄ400…: „a… first mode in-plane, „b… second mode in-plane, „c… first mode out-of-plane, „d…
second mode out-of-plane. Experimental mode shapes correspond to the circled points in Fig.
5.
MARCH 2001 Transactions of the ASME
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above an upper eyelet. The four-bar linkage is driven by a P
controlled permanent magnet DC motor so that the eyelet in
rotating link undergoes the desired circular motion. An axia
stiff (EA5237 N) three strand continuous filament polyes
string with linear densityrA50.001 kg/m is used. The nomina
string length and steady-state tension are 0.376 m and 0.09
respectively. The nondimensional parameterl52604 is large,
justifying the quasi-static assumption. Steady-state and mo
shape displacement measurements are generated using a
and a digital camera. A small sinusoidal variation of the rotat
speed excites vibration and allows determination of the nat
frequencies and mode shapes. The sinusoidal input sw
through a frequency range and the tension output is monitore
determine peak vibration amplitudes~resonances!.

Experimental Results. Figure 3 plots the theoretical and ex
perimental relationship between the nondimensional rota
speedv and the nondimensional balloon heighth and eyelet
lengthd. The theoretical curves come from Eq.~24!. The theory
and experiment show thatv decreases with increasingh and/ord.

Figure 4 compares the theoretical and experimental ball
shapes for the two circled points in Fig. 3. Best fit lines throu
the experimental data are also shown. The results agree to w
one percent for the small radius balloon in Fig. 4~a!, correspond-
ing to a smallv50.6p, and from Fig. 3, a largeh50.99. Largeh
implies that the balloon is stretched taut because the heigh
almost equal to the string length. For largerv ~smaller h!, the
balloon displacement is larger as shown in Fig. 4~b!. Reduction of
h,0.7 causes the balloon to collapse or flutter chaotically du
the system nonlinearities.

Several assumptions increase the difference between theory
experiment to seven percent for the large-amplitude displacem
case~Fig. 4~b!!. First, the relatively low speed of the experimen
tests~635 rpm! means that gravity loading is significant. Figu
4~b! clearly shows gravity pulling the steady-state shape do
ward relative to the theoretical prediction. Second, air drag in
experiment pushes the balloon slightly out-of-plane. Finally,
large-amplitude experimental results are influence by nonlin
effects.

Figure 4 also explains whyv varies withh andd as shown in
Fig. 3. As h increases, the balloon becomes taut and the ste
state tension increases. The nondimensional rotation speed
versely related to steady-state tension and therefore decreased
increases dramatically, the balloon also becomes taut, increa
steady-state tension and decreasingv.

Three nondimensional parameters~d, l, andv! govern the sys-
tem response. In the experiment, the length, height, and rota
speed of the balloon can be easily controlled. Maintaining a c
stant balloon length while changing the balloon height ensu
that d remains constant. The nondimensional variable

g5
l

v2 5
EA

rAV2L2 (39)

is also constant if the experiments are run at constant speed. T
the experimental results are generated for constantd andg and for
varying v by maintaining constant balloon length and rotati
speed but changing the balloon height.

In Zhu et al.@7#, the inextensibility assumption was found
affect the results by less than one percent ifg/d2.1000. The
experimental parameters yieldg/d252.83105@1000, providing
the validity of the inextensibility assumption.

Figure 5 shows how the natural frequencies and mode sh
change with nondimensional rotation speedv for fixed d50.038
and g5400. At v50 the balloon is taut and the in-plane an
out-of-plane vibration frequencies repeat at the pinned string n
ral frequenciesvn5np. As v increases, the frequencies separ
into forward and backward whirling modes. The forward whirlin
modes move faster relative to a ground observer and thus
higher frequency. The mode shapes for the first three mode
Journal of Applied Mechanics
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v50.3p shown in Fig. 5~a! have identical in-plane and out-of
plane amplitudes, indicating circular whirling. Abovev50.4p
the curvature begins to become significant and the stiffening i
gral term in Eq.~31! increases the frequency of modes that are
orthogonal tok(s). As k(s) is approximately a half-sine, the firs
two modes are most affected by increasing curvature. The o
modes, being essentially sinusoids with spatial wavelengths e
to integral divisors of the first mode wavelength, are orthogona
k(s) and are not as sensitive to increasing curvature. Atv
50.6p ~Fig. 5~b!!, the first forward whirling mode and the secon
backward whirling mode exchange order due to an eigenva
curve veering nearv50.5p. The first backward whirling mode
frequency increases slightly fromv50.5p to v50.7p due to
curvature stiffening that reduces the in-plane modal amplitu
producing elliptical whirling. Atv50.9p ~Fig. 5~c!!, the first
backward whirling mode is almost entirely confined to the out-
plane with the small in-plane component having a full sine sha
The first forward whirling mode has veered up off the graph. T
second and third modes are the second and third backward w
ing modes, respectively. Atv5p, the first backward whirling
mode buckles and the first forward whirling mode veers to infi
ity. The other forward and backward whirling modes change
6p from their values atv50, respectively.

The experimentally measured first two natural frequenc
plotted as asterisks on Fig. 5, match the theory curves to within
percent for the first mode and four percent for the second mo
Above v5.97p, the balloon becomes too large and tends to c
lapse into a double balloon or flutter. Thus the theory is reas
ably accurate forv,.97p or r 2,0.4. Belowv50.5p, the bal-
loon is too taut for mode shape measurement. Figure 6 shows
theoretical and experimental mode shapes for the first two mo
at v5.9p in reasonably good agreement. Note that the first mo
is shaped like a half-sine out-of-plane and small-amplitude f
sine in-plane as predicted by the theory.

Conclusions
The calculated natural frequencies and mode shapes from

small sag (R2,0.4L), quasi-static (Pe!EA), single loop (V
,pAPe /rAL25Vc) balloon model match the experimental r
sults over a broad range of speeds. The first backward whir
mode buckles at the critical speedV5Vc . The first forward
whirling mode is sensitive to balloon curvature and veers upw
in frequency with increasingv. The remaining modes start a
vn5np and change approximately linearly asv increases with
slopes of6p for forward and backward whirling modes, respe
tively.
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A New Lagrangian and a New
Lagrange Equation of Motion
for Fractionally Damped Systems

O. P. Agrawal
Professor, Mechanical Engineering and Energy Proces
Southern Illinois University, Carbondale, IL 62901

1 Introduction
All dynamic systems exhibit some degree of internal dampi

Recent investigations have shown that a fractional deriva
model provides a better representation of the internal dampin
a material than an ordinary derivative model does. For a surve
fractional damping models and their applications to enginee
systems, the readers are referred to Rossikhin and Shitikova@1#
and the references therein. Traditionally, the Newton’s law is u
to model such nonconservative systems, and when a Lagran
Hamiltonian, variational, or other energy-based approach is u
it is modified so that the resulting equations match those obta
using the Newtonian’s approach.

Several attempts have been made to include nonconserv
forces in the Lagrangian and the Hamiltonian mechanics. Rie
@2,3# presented a succinct survey of research in this area. He
pointed out that a term proportional todnx/dtn in the Euler-
Lagrange equation follows from a Lagrangian with a term prop
tional to (dn/2x/dtn/2)2. Hence, a frictional force of the form
c(dx/dt) may follow directly from a Lagrangian containing
term of the form (d1/2x/dt1/2)2. Using this as the starting point, h
developed a new approach to mechanics that allows noncons
tive terms~both ordinary and fractional damping! to be included
in Lagrangians and Hamiltonians. This paper presents ano
form of a Lagrangian and the Lagrange equation that can be
to obtain equations of motion of systems whose damping for
are proportional to a fractional derivative of orderj /n. With a
minor change in the formulation, the resulting equations can
thought of as a state space representation of Riewe’s formula
~@2,3#!.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ju
7, 1999; final revision, Apr. 24, 2000. Associate Editor: A. A. Ferri.
Copyright © 2Journal of Applied Mechanics
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2 A New Lagrangian and a New Lagrange Equation of
Motion

This section presents a new Lagrangian and a new Lagra
equation of motion for a fractionally damped system. There
several definitions of a fractional derivative. Here a fractional d
rivative is defined in the Riemann-Liouville sense~@4#!:

Dax~ t !5
dax~ t !

dta
5

1

G~12a!

d

dt E0

t x~ t2u!

ua du,

t.0, 0,a,1. (1)

This definition can be extended fora.1. Herex(t) represents a
state space coordinate of the dynamical system. The Lagran
and the Lagrange equation of motion are given as

L5n1~a! 1
2~Day!TMDay2

1
2 yTKy1QTy, (2)

and

n1
21~a!

da

dta
]L

]~Day!
2

]L

]y
50 (3)

where y is a state vector,M and K are the mass-like and th
stiffness-like matrices,n1(a) is a a-dependent coefficient, andQ
is a vector of generalized forces. The purpose ofn1(a) is to make
the formulation consistent with the variational~or Euler-
Lagrange! approach~@2,3#!. Sincen1(a) does not appear in the
equations of motion, it will not be included, and its expressi
will not be given here~for its expression see@2,3#!. The Lagrang-
ian L defined in Eq.~2! is applicable for positive rationala only.
The dimensions ofy, M, andK depend on the denominator part o
a. Therefore, in this setting,L cannot be developed for irrationa
a. MatricesM and K are not the traditional mass and stiffne
matrices. It will be seen thatM may contain the mass and th
damping, andK may contain the mass, the damping, and the st
ness. In the case of zero damping,M andK reduce to the mass an
the stiffness matrices. It is assumed that, for the functions con
ered here, the composition rule applies.

Substituting Eq.~2! into Eq.~3!, we get the equation of motion
as

MD2ay1Ky5Q. (4)

To generateL, we needa, y, M, K, andQ. a is half of the lowest
common fractional derivative order. Thus, for a force of the fo
(dj /nx/dtj /n), a51/(2n). a can be smaller. However, the smalle
a introduces no new modeling capability. The elements of
e
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state vector y are defined asyi5D2ayi 115D1/nyi 11 , (i
51, . . . ,l 21), andyl5x(t), where l 52n is the dimension of
the vector.

Now consider thatmD2x, cDj /nx, andkx represent the inertia
the damping, and the spring forces, wherem, c, andk are, respec-
tively, the mass, the damping coefficient, and the stiffness of
system. In this case,M andK are given as

M5F 0 ¯ 0 ¯ m

] ¯ ] � ]

0 ¯ m ¯ c

] � ] � ]

m ¯ c ¯ 0

G ,

K53
0 ¯ ¯ 0 2m 0

] � � � � 0

] � � � 2c 0

0 � � � � ]

2m � 2c 0 � 0

0 0 0 ¯ 0 k

4 . (5)

In matrixM the off-diagonal containsm and thejth off-diagonal
measured from the bottom right corner containsc. In matrixK the
bottom right corner containsk, the elements left to the off-
diagonal contain2m, and all except the first and the last elemen
of the (j 11)th off-diagonal measured from the bottom right co
ner contains2c. Note thatM andK are symmetric. Structure o
these matrices will be explained further using two examples.
nally, vectorQ is given as

Q5@0,̄ ,0,F# (6)

whereF is the generalized force.
The Lagrangians and the Lagrange equations of motion for

fractionally damped systems are given below.
Example 1. Damping force5 cẋ.
For this system,a51/2. Vector y, matricesM5M1 and K

5K1 , the LagrangianL, and the Lagrange equation are

y5@y1 y2#T5@ ẋ x#T,

M15F 0 m

m c
G , K15F2m 0

0 k
G ,

L5
1
2~D1/2y!TM1D1/2y2

1
2 yTK1y,

d1/2

dt1/2

]L

]~D1/2y!
2

]L

]y
50.

These terms giveM1Dy1K1y50, which is equivalent tomẍ
1cẋ1kx50.

Example 2. Damping force5cD4/3x.
This example shows the locations ofc when j in the force term

cDj /nx is more than 1. For this system,a51/6. Vectory, matrices
M5M2 andK5K2 , the LagrangianL, and the Lagrange equatio
are

y5@y1 y2 y3 y4 y5 y6#T

5@D5/3x D4/3x D1x D2/3x D1/3x x#T,

M253
0 0 0 0 0 m

0 0 0 0 m 0

0 0 0 m 0 c

0 0 m 0 c 0

0 m 0 c 0 0

m 0 c 0 0 0

4 ,
340 Õ Vol. 68, MARCH 2001
the
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K253
0 0 0 0 2m 0

0 0 0 2m 0 0

0 0 2m 0 2c 0

0 2m 0 2c 0 0

2m 0 2c 0 0 0

0 0 0 0 0 k

4 ,

L5
1
2 ~D1/6y!TM2D1/6y2

1
2 yTK2y,

d1/6

dt1/6

]L

]~D1/6y!
2

]L

]y
50.

These terms giveM2D1/3y1K2y50, which is equivalent tomẍ
1cD4/3x1kx50.

Note thatM may containm andc, andK may containm, c, and
k. Also, note that in the examplesc can be set to zero to obtain th
differential equations of motion of an undamped system in
higher dimension. Similarly,a in Example 1 can be set to 1/4 t
obtain the differential equations of motion of a damped system
a higher dimension. However, such increase in dimensions a
no benefit. Further, as the order of the fractional derivativea
moves from 1 towards 0~1 towards 2! the damper behaves like
spring ~mass!.

Several techniques have been developed to solve the resu
set of fractional differential equations. Suarez and Shokooh@5#
presented an eigenvector expansion method to solve these d
ential equations. Other methods to solve these fractional diffe
tial equations include, for example, Laplace transform and dir
techniques similar to the techniques for ordinary differential eq
tions ~@6–8#!, and the numerical techniques~@9#!.

3 Additional Remarks
Riewe@2,3# developed a new approach to mechanics with fr

tional derivatives that includes the nonconservative Hamiltoni
Canonical transformations and the Jacobi theory. The appro
can also be used to develop similar Hamiltonians and the Ha
ton equations. To this end, we propose the following Hamilton
and Hamilton equations for fractional systems.

H5~Day!Tp2L5~Day!Tp2
1
2~Day!TMDay1

1
2 yTKy,

]H

]p
5Day, and

]H

]y
52Dap,

wherep5MDay. It can be shown that the above equations le
to the correct equation of motion. Using these equations,
Hamiltonian can also be written as

H5
1
2~Dap!TM 21Dap1

1
2 yTKy,

which is similar to the total energy term for a conservative syste
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On the Unification of Yield Criteria
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A piecewise linear unified yield criterion called the twin-shea
unified was proposed. It is based on a kind of orthogonal dode
hedron stress element. The effects of intermediate principal st
are taken into account such that most available yield loci on
p-plane are embraced in a unified manner. Besides, it is capa
to represent not only convex limit surfaces but also noncon
limit surfaces. @DOI: 10.1115/1.1320451#

1 Introduction
For many engineering materials, two characteristic stren

properties are crucial, i.e., initial and subsequent yield proper
The initial yield defines the critical state when the material un
the complex stress state starts to yield. The subsequent yield
with the post yield phenomena. It describes the material beha
beyond the initial yield. The initial yield provides the basis. A
long as the initial yield property is defined, the remaining task
to define the different hardening/softening properties and to in
porate them into the initial yield provided. In this note, the yie
criteria will be confined to the initial yield properties unless ot
erwise stated.

Generally speaking, yield criteria can be classified into t
categories. The first category has originated from the concept
single shear stress yield criterion such as the Tresca and
Mises. The Tresca is a maximum principal shear stresstmax cri-
terion. The Mises is an octahedral shear stresstoct criterion. They
both postulate that whentmax ~or toct! reaches a critical value, th
material begins to yield. Both the Tresca and the Mises are ap
cable only to materials with~i! equal tensile and compressiv
strengthss t5sc ; ~ii ! linear failure loci on the meridian plan
~i.e., parallel to the hydrostatic axis which is represented by

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received and accepted by the ASME Applied Mechan
Division, Feb. 16, 1999; final revision, Nov. 1, 2000. Associate Editor: M.-J. Pind
Copyright © 2Journal of Applied Mechanics
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line s15s25s3 in the principal stress space!. Many derivatives
of these two criteria have been proposed to model a wider ra
of engineering materials. Among them, the well-known ones
Mohr-Coulomb, Hoek-Brown, and Johnson~Tresca’s derivatives!,
Matsuoka and Lade~Mises’ derivatives! @1#. The Mohr-Coulomb
is atmax2st criterion which considers the effect oftmax as well as
the normal stressst on the same plane. The introduction ofst
makes it capable of simulating materials with different tensile a
compressive strengthss tÞsc ~called the strength differential ef
fect or SD effect!. The Hoek-Brown and Johnson are Moh
Coulomb’s derivatives for rock. They take into account the eff
of nonlinear failure loci on the meridian plane while the Moh
Coulomb does not. The Matsuoka and Lade are failure theo
for soil ~sand!. They account for both the SD effect and the no
linear failure loci on the meridian plane.

Unfortunately, recent research revealed that those theorie
not necessarily represent the real failure/yield of materials un
complex stress state. One prominent feature has been ignored
the effect of the intermediate principal stress (s2). The Tresca
and its derivatives ignore this effect whereas the Mises and
derivatives average the effects of all the three principal stres
s1 ,s2 ,s3 . Experiments show that thes2 effect varies from case
to case~@2–5#!. The extent of thes2 effect depends on the mate
rial type and the stress state.

The second category of yield criteria may be called cur
fitting multiparameter criteria such as the Argyris-Gudehu
Zienkiewicz criterion, the Willam-Warnke criterion, and som
smooth models~@1#!. These criteria usually have complex mat
ematical expressions because simple expressions usually ca
reflect the diversity of test results. The main advantage is that t
can simulate accurately the yield properties in the particular ra
of complex stress state where most tests are conducted. Ano
deficiency is that they have little physical background.

2 Twin Shear Unified Strength Criterion „TS-Unified…

2.1 The TS-Unified Criterion Bridges Most Available
Theories on p Plane. The TS-unified is an extension of th
twin shear yield criterion~TS! ~@6#! and the generalized twin shea
yield criterion~GTS! ~@7#!. The TS is based on a kind of orthogo
nal dodecahedron~OD! stress element and it assumes that whe
function of the two larger principal shear stresses (t13,t12) or
(t13,t23) reaches a critical value, the material begins to yield, i

t131t125s t when t12>t23
(1)

t131t235s t when t12<t23

ics
ra.
Fig. 1 Different yield loci on the p-plane for non-SD materials
„s tÄsc or bÄ0…
001 by ASME MARCH 2001, Vol. 68 Õ 341
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where t135(s12s3)/2, t235(s22s3)/2, t125(s12s2)/2 are
the principal shear stresses.s1 , s2 ands3 (s1>s2>s3) are the
principal normal stresses.s t is the uniaxial tensile strength.

The TS is an upper limit surface in the stress space comply
with Drucker’s convexity postulate and is used for non-SD ma
rials ~s t5sc , where sc is the uniaxial compressive strength!
only. It is the counterpart to the Tresca, as shown in Fig. 1. T
GTS extends the idea and assumes that the yield surface
function of two larger principal shear stresses (t13,t12) or
(t13,t23) and their corresponding normal stresses (s13,s12) or
(s13,s23), i.e.,

t131t121b~s131s12!5
2s tsc

sc1s t
when t121bs12>t231bs23

(2)

t131t231b~s131s23!5
2s tsc

sc1s t
when t121bs12<t231bs23.

where s135(s11s3)/2, s125(s11s2)/2, s235(s21s3)/2.
The parameterb reflects the effects of the normal stresses so t
SD effect can be represented. Likewise, the GTS serves as
counterpart to the Mohr-Coulomb, as shown in Fig. 2. Wh

Fig. 2 Different yield loci on the p-plane for SD materials „s t
Åsc or bÅ0…
342 Õ Vol. 68, MARCH 2001
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b50, the GTS is simplified to the TS. So the TS is a special c
of the GTS.

In the TS and GTS, the largest stresses~both the shear and the
normal stresses! have the same extent of influence as that of
second largest. When different weight parameters are employe
reflect the different effects of the largest stresses and the se
largest, the GTS can be generalized to the TS-unified. The
unified can be expressed as

t131bt121b~s131bs12!5C when t121bs12>t231bs23
(3)

t131bt231b~s131bs23!5C when t121bs12<t231bs23

whereb is a material parameter which represents the effect of
intermediate~the second largest! principal stresses. The value ofb
can be determined by material tests.b and C are also material
parameters. If uniaxial tensile and compressive strength~s t and
sc! are chosen as the basic test points, thenb and C can be
expressed as

b5
sc2s t

sc1s t
5

12a

11a
C5

~11b!s tsc

sc1s t
5

11b

11a
s t . (4)

where a5s t /sc is the ratio of the tensile to the compressiv
strengths. The ratio is an index of the material strength differen
effect ~SD effect!.

The TS-unified is a series of piecewise linear yield criteria
the p-plane as shown in Figs. 1 and 2. The exact form of expr
sion depends on the choice of parameterb, which in turn can be
determined by some basic test results as illustrated in Section
of this note. The TS-unified has the following characteristics
shown in Table 1:

~a! With different choices of parameterb, the TS-unified can
be simplified to the Tresca~b50 andb50!, the linear approxi-
mations of Mises~b50 andb51/2 or b50 andb51/(11))!,
the Mohr-Coulomb~bÞ0 andb50!, the TS~b50 andb51!, the
GTS ~bÞ0 andb51! and a series of new strength criteria~other
values of parametersb andb!.

~b! In the stress space, the lower and upper bounds for the y
surfaces on thep-plane are special cases of the TS-unified, i.
b50 ~b50 for the Tresca orbÞ0 for the Mohr-Coulomb! and
b51 ~b50 for the TS orbÞ0 for the GTS!, respectively.

~c! When the parameterb varies between 0 and 1, a series
yield surfaces between the two limiting surfaces can be obtain

~d! When the parameterb varies beyond the range~i.e., b,0
or b.1!, a series of nonconvex limit surfaces could be derive

2.2 The TS-Unified Reflects Different s2 Effects. The
Lode angleus is a parameter to represent the relative value ofs2
Table 1 The characteristics of TS-unified

b50 (s t5sc5s0) bÞ0 (s tÞsc) Drucker’s Convex Postulate

b50 Tresca Mohr-Coulomb Lower bound
p plane loci Regular hexagon Irregular hexagon

Restriction for application t05
s0

2
t05

stsc

sc1st

0,b,1 New theories New theories Intermediate
p plane loci Irregular dodecagon Irregular dodecagon

Restriction for applications t05
~b11!

~21b!
s0 t05

~b11!stsc

st1~b11!sc

b51 Twin shear theory Twin shear theory Upper bound
p plane loci Regular hexagon Irregular hexagon

Restriction for applications t05
2

3
s0 t05

2stsc

st12sc
Transactions of the ASME
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with respect tos1 and s3 . To reflect thes2 effect, a theory
should embed this parameter in its expression either in explic
in implicit forms.

The TS-unified is usually expressed in terms of the stress~de-
viatoric! invariants, that is the first invariant of stress tensorI 1 ,
the second invariant of stress deviatoric tensorJ2 , and the stress
angleu, as follows:

I 1

3
~12a!1S 11

a

2 D 2AJ2

)
cosu2

a~12b!

11b
AJ2 sinu

5s t when 0 deg<u<ub (5)

I 1

3
~12a!1S 22b

11b
1a D AJ2

)
cosu2S a1

b

11bDAJ2 sinu

5s t when ub<u<60 deg

whereub is the stress angle when the two Eqs.~5! are equal:

ub5tg21
)

112a
, ~0 deg,ub,60 deg!. (6)

The stress angleu is defined to reflect thes2 effect as shown in
Fig. 2, such that

u5
1

3
cos21

3)

2

J3

AJ2
3

~0<u<p/3!. (7)

Fig. 3 TS-unified can reflect the s2 effect in a piecewise linear
manner; „a… aÄ1 and s3 Õs tÄ0.2 case; „b… aÄ1 and bÄ1 case
Journal of Applied Mechanics
t or

It should be noted that the stress angleu is different from the Lode
angleus , and they are related as follows:

u5
p

6
2us . (8)

Equation ~5! is the explicit expression for the TS-unified i
terms of the stress angleu. With different choices of the paramete
b, the TS-unified can reflect different piecewise linears2 effects.
Two illustrations are given. Figure 3~a! shows the curves of
s1 /s t versuss2 /s t for a51 ands3 /s t50.2. Obvious strength
difference can be observed when different criteria are adop
~represented by different values of the parameterb!. The maxi-
mum difference is about 25 percent. Figure 3~b! shows the curves
for a51 andb51. The same conclusion can be drawn as fro
Fig. 3~a!. In other words, the TS-unified is capable of represent
variable strengths of the same material under different st
states.

2.3 Application of the TS-Unified. If s t , sc and the shear
strengtht0 are chosen as the basic material parameters, thro
Eq. ~3! for pure shear loading, the parameterb can be expressed a

b5
~sc1s t!t02s tsc

~s t2t0!sc
. (9)

The parameterb plays an important role in the TS-unified.
builds a bridge among different strength theories. It is this para
eter that distinguishes one theory from another. On the other h
the scope of application of each theory is also represented by
parameter. Hence, the TS-unified is a unified theory that can
applied to more than one kind of material. In practice, when ba
material parameters are obtained by experiments, the valueb
can be determined through Eq.~9!. Whenever parameterb is ob-
tained, the yield criterion is determined and the application
possible~@8#!.

3 Conclusions
A piecewise linear unified yield criterion called the TS-unifie

was proposed. Besides the capability that the TS-unified
bridge most available yield loci on thep-plane for both SD and
non-SD materials, the most prominent characteristics of the c
rion are their capability to represent the effects of the intermed
principal stresss2 in piecewise linear forms. Illustrations wer
given. The determination of the parameters was also discuss

Future research could focus on the pursuit for some criteria
can bridge different criteria both on thep-plane and on the me
ridian plane. It is obvious that the representation for nonlin
meridian loci can be obtained by adopting multiparameter cr
rion instead of the proposed two-parameter TS-unified.

References
@1# Chen, W. F., and Han, D. J., 1988,Plasticity for Structural Engineers,

Springer-Verlag, New York.
@2# Mogi, K., 1967, ‘‘Effect of Intermediate Principal Stress on Rock Failure,’’

Geophys. Res.,72, pp. 5117–5131.
@3# Michelis, P., 1987, ‘‘True Triaxial Cyclic Behavior of Concrete and Rock

Compression,’’ Int. J. Plast.,3, No. 2, pp. 249–270.
@4# Faruque, M. O., and Chang, C. J., 1990, ‘‘A Constitutive Model for Press

Sensitive Materials With Particular Reference to Plain Concrete,’’ Int. J. Pla
6, No. 1, pp. 29–43.

@5# Li, X. C., and Xu, D. J., 1990, ‘‘Experimental Verification of Twin Shea
Strength Theory—The Strength Properties of Granite Under True Tria
Stress State,’’ Wuhan Institute of Rock and Soil Mechanics, Chinese Acad
of Science, Paper Yantu~90! 52 ~in Chinese!.

@6# Yu, M. H., 1983, ‘‘Twin Shear Stress Yield Criterion,’’ Int. J. Mech. Sci.,25,
No. 1, pp. 71–74.

@7# Yu, M. H., He, L. N., and Song, L. Y., 1985, ‘‘Twin Shear Stress Theory a
Its Generalization,’’ Sci. Sinica A,28, No. 1, pp. 1174–1183.

@8# Yu, M. H., Yang, S.-Y., and Fan, S. C., 1999, ‘‘Unified Elasto-Plastic Ass
ciated and Non-Associated Constitutive Model,’’ Comput. Struct.,71, No. 6,
pp. 627–636.
MARCH 2001, Vol. 68 Õ 343
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Analytical solution for the tangential stress distribution ahead
a hole is needed for the theoretical prediction of notched stre
of brittle laminate using the well-known W-N criteria. In t
present study, tangential stress distribution in an orthotropic
cular cylindrical shell under uniaxial loading with a circular ho
is obtained intuitively with the use of a stress function. A g
agreement is obtained for the stresses around and ahead o
circular hole in ~0 deg4630 deg!s and 90 deg laminates wit
the finite element results.@DOI: 10.1115/1.1320452#

Introduction
Prediction of failure strength of brittle laminate with a hole w

very well established based on the W-N fracture criteria~@1–4#!.
Failure of the laminate occurs when the dominant stress nea
hole or the average of the dominant stress over a region nea
hole reaches the strength of the laminate. Konish and Whitne@5#
developed an analytical solution for the stress distribution ne
hole in an orthotropic plate. For the shell-type composite st
tures one has to essentially go for the finite element approa
there is no such analytical solution available in the literature
employing the W-N criteria. For the best numerical results a c
344 Õ Vol. 68, MARCH 2001 Copyright ©
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understanding of the maximum stress location is very essential.
Unlike in metallic structures, for fiber-reinforced orthotropic
shells, the maximum stress does not occur at the hole edge in a
plane normal to the loading direction, but depends on the fiber
orientations~@5#!. Moreover, establishing convergence for the fi-
nite element model for the isotropic medium for a known problem
does not ensure convergence for the orthotropic medium. Hence
an analytical solution that can bring out the overall behavior of the
orthotropic structure is very much required.

Savin @6# in his complex variable approach to the problem of
stresses in an isotropic circular cylindrical shell with holes
showed that the stress state in a shell is a sum of a plate solution
and a function of curvature effect. Konish and Whitney’s@5# and
Kumar, Rao, and Mathew’s@7# orthotropic equations~plate! were
based on the sum of an isotropic plate solution and a function of
higher order term of distance ahead of the hole in terms of ortho-
tropic material constants. Thus one can conjecture that the ortho-
tropic shell solution in a polar coordinate system~r,u! can be
obtained as a sum of an isotropic plate equation~first term in~1!!,
higher order term of distance ahead of a hole~third term in ~1!!,
and functions of isotropic and orthotropic curvature effects~sec-
ond and fourth terms in~1!!.

su
Sh~r,u!

s
U

Ortho

5
su

Pl~r,u!

s
U

ISO

1 f ~b! ISO

1 f S higher order terms inr with
orthotropic coefficients D

1 f S higher order terms inr with
orthotropic coefficients forb D (1)

In the present work an analytical solution for the tangential
stress distribution ahead of a circular hole in an orthotropic circu-
lar cylindrical shell under axial loading is obtained for use via the
W-N criteria.

Analytical Solution for the Tangential Stress Distribu-
tion

The most general solution for the stress distribution near cut-
outs of any arbitrary shape under tension or internal pressures up
to an accuracy ofb2 was given by Pirogov@8#. The equation with
unknown coefficients~like A0 , B0 , EK , FK , etc.! is of the form
Im~f j !5
1

p 5
F2A0

~ j ! lnS gb

&
D 1S A2

~ j !1
B2

~ j !

r2 D cos 2uG1 (
k54,6, . . .

` S k22

2rk22 Ak
~ j !1

Bk
~ j !

rk D cosku

1b25 2B0
~ j ! lnS gb

&
D 2

p

4
~2A0

~ j !1A2
~ j !!r21 (

k54,6, . . .

` S Ek
~ j !

rk22 1
Fk

~ j !

rk D cosku

1F2p

4
~A0

~ j !1A2
~ j !!r21E2

~ j !1
F2

~ j !

r2 Gcos 2u. 6 6 (2)
Based on the above stress function, Savin obtained the tan
tial stress distribution around a circular hole of radius ‘‘a’’ in an

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ma
4, 1999; final revision, May 25, 2000. Associate Editor: J. W. Ju.
2

gen-isotropic shell of radius ‘‘R’’ and thickness ‘‘t,’’ under axial load-
ing, as a sum of an isotropic plate solution (su

Pl(r,u)/s) and a
function of isotropic curvature parameter,b. The solution is valid
for a hole whose projected size~on a plane passing through the
axis of shell and normal to the axis of hole! is close to the actual
hole size.
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su
Sh~r,u!

s
U

ISO

5
12cos 2u

2
1

1

2r2

2
3

2r4 cos 2u ~5 isotropic plate solution!

2
pb2

8 S 11
3

r4D cos 2u

~5function in isotropic b, f ~b! ISO!. (3)

Similarly for an orthotropic shell,

su
Sh~r,u!

s
U

Ortho

5
su

Pl~r,u!

s
U

Ortho

1 f ~b!Ortho (4)

wherebOrtho5@A4 3(12n2)(Eu /EY)/2#a/ARt, n5Poisson’s ratio,
Eu andEY are the moduli of elasticity inu andY ~loading direc-
tion! directions~@9#!, and (su

Pl(r,u)/s) for the orthotropic plate is
available in Kumar et al.@7#.

su
Pl~r,u!

s
U

Ortho

5
12Cos 2u

2
1

1

2r22
3

2r4 Cos 2u

1(
j 52

`
2C2 j

2 F4 j 23

r4 j 222
4 j 21

r4 j GCos 2j u (5)

Details of the orthotropic coefficientsC2 j ~ j varying from 1 to`!
are given in the Appendix.

It can be noticed from Pirogov’s stress function given in~1!
that the higher order terms for the plate solution andb are of
similar trigonometric relationship. Therefore, the functions ofb
may be expressed as

f ~b!Ortho52
pb2

2 H 1

4 S 11
3

r4DCos 2u

1(
j 52

`
C2 j

2 F4 j 23

r4 j 222
4 j 21

r4 j GCos 2j uJ . (6)

Thus the final expression for the tangential stress distribution
an orthotropic circular cylindrical shell with a circular hole
given by

su
Sh~r,u!

s
U

Ortho

5
12cos 2u

2
1

1

2r22
3

2r4 cos 2u2
pb2

8

3H S 11
3

r4D cos 2uJ 1S 11
pb2

2 D
3H(

j 52

`
2C2 j

2 H 4 j 23

r4 j 222
4 j 21

r4 j J cos 2j uJ .

(7)

In this work, circular cylindrical shells with (04 ,630)S and
(90)12 lay ups made of high modulus M55J/M18 carbon/epo
laminate having material propertiesEX5328.949 GPa, EY
55.955 GPa,GXY54.414 GPa andnXY50.346, with layer thick-
ness of 0.1 mm is considered.

Finite Element Modeling
The laminated circular cylindrical shell~R548 mm, t

51.2 mm and height5180 mm! with a hole of radiusa55 mm is
modeled using eight-noded layered shell elements availabl
NISA2 finite element software. Due to the symmetry, one fou
of the shell~at its half height! is modeled. The region around th
hole is modeled with a finer mesh with an element size of o
tenth of the hole radius up tor50.5, then one fifth up tor51 and
Journal of Applied Mechanics
for
s

xy

in
rth
e
ne

then one fourth up tor52 in the radial direction, while inu
direction, it is at every five-degree interval along the circumf
ence of the hole from 0 deg to 180 deg.

Boundary Conditions. Symmetric boundary conditions ar
applied at the symmetric planes.

Loading. A distributed load of 240 N is applied on the node
at the top circumference. The load is distributed in each elem
in the ratio of 1:4:1 among the nodes in an element.

Fig. 1 Tangential stress distribution around a circular hole in
an orthotropic shell

Fig. 2 Tangential stress distribution ahead of a circular hole in
an orthotropic shell
MARCH 2001, Vol. 68 Õ 345
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Results and Discussion
Initially, convergence of~7! is established by progressively in

creasing the number of terms till a converged value is obtain
For the present cases terms up toC22 ( j 511) are needed to
achieve convergence within one percent. It may be noted tha
b50, ~7! reduces to the orthotropic plate solution.

Using ~7!, the tangential stress distribution around a holer
51) is obtained and compared with the finite element results
shown in Fig. 1. The maximum stress concentration factor
28.56 is observed atu50 for (90)12 laminate, as against th
finite element result of28.71. The deviation in the results is e
timated as two percent.

In the case of (04 ,630)S lay up, the peek stress occurs atu
590 deg as expected, with a stress concentration factor v
equal to 5.18 as against the finite element result of 5.44. It ca
noticed that the deviation between the two values is about
percent. The stress distributions away from the hole forr51 to 2,
for the two types of lay-up sequence considered are shown in
2. From the finite element analysis, it is found that as a percen
of total stress, bending stress constitute within two percent for
types of lay-up sequences considered. It is concluded that
present solution shows a reasonably good agreement with th
nite element results.

Conclusion
A new analytical solution for tangential stress distribution f

an orthotropic circular cylindrical shell with a circular hole und
axial loading is derived which gives good agreement with fin
element results. The solution can be used with W-N criteria
the prediction of notched strength of an orthotropic shell with
circular hole.

Appendix
There is a standard technique~@10#! for determining the Fourier

coefficientsC2 j of a function as in~7!:

A0C01A2C21A4C452a0 (A1a)

A2C01~A412A01 !C21A2C41A4C652a2 (A1b)

and for j .3 a recursive relationship exists in the form

C2 j5
21

A4
@A2C2 j 2212A0C2 j 241A2C2 j 261A4C2 j 28#

(A1c)

where a054k(n1k21); a2524k(n1k11); A0531n222k
13k2

A254~12k2!; A45~12n212k1k2! (A2)

n5N/K, N5A2~K2 n̄XY!2ĒX /ḠXY

k51/K, K5AĒX /ĒY

ĒX ,ĒY ,n̄XY ,ḠXY are the overall orthotropic properties of th
shell.
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Stress Wave Propagation in a Coated
Elastic Half-Space due to Water
Drop Impact
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Stress wave propagation in a coated elastic half-space due
water drop impact is studied by using the Cagniard-de Ho
method. The stresses have singularity at the Rayleigh wavef
whose location and singular behavior are determined from
pressure model and independent of the coating thickness, w
reflected waves cause minor changes in amplitudes.
@DOI: 10.1115/1.1352060#

Introduction
High-speed impact of liquid drops has been known to ca

damage and erosion of the structures such as steam turbine bl
skin of the aircraft, and missiles. Evans et al.@1# used a FDM in
studying motion of the elastic bodies, where their pressure load
was obtained as if the water drop collided against a solid surfa
Adler @2# performed a more comprehensive three-dimensiona
nite element method analysis by allowing interactions betwee
water drop and a deformable target. Blowers@3# studied stress
wave propagation in an elastic half-space analytically by empl
ing the Cagniard-de Hoop method~@4#!. Although Blowers used a
simplified pressure model, which is valid only in the early stage
the impact, his results provided important information about
role of the Rayleigh waves and later his method has been u
extensively by others~@5#! to compute the stresses for variou
materials.

For damage and erosion protection, an idea of coating the
face with a thin elastic layer~@6#! has been frequently used. I
order to select the proper coating material and thickness,
essential to know the stresses inside the coating and the
material. In this paper, we study stress wave propagation i
coated elastic half-space analytically by using the generalized

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ja
27, 1999; final revision, July 21, 2000. Associate Editor: A. K. Mal.
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method~@4#!. We use the same pressure model as Blowers, wh
means that our solution is useful only in early stage of the imp
process before lateral outflow jetting takes place. However,
results are of great importance, since high stresses and pos
damages may occur in a very early stage of the impact.

Theory
As shown in Fig. 1, we consider a coated elastic half-spacez

.0), where a thin elastic layer of uniform thicknessh lies over the
surface. On the surface, the stress generated by a water dro
pact is given in a cylindrical coordinate by

szz~r ,z,t !52P, r ,k0At, szz~r ,z,t !50, r .k0At,
(1)

whereP is a constant pressure andk0 is a constant determine
from the diameter and impact velocity of the water drop~@5#!.

The potential functions in the coating and half-space satisfy
wave equations

¹2f i5
1

a i
2

]2f i

]t2 , ¹2c i5
1

b i
2

]2c i

]t2 , (2)

where the subscripti 51 is for coating, whilei 52 for the half-
space. The parametersa i andb i are the sound speeds of P and
waves in theith medium. We nondimensionalize the parameters
a similar way as Blowers@3# did, and transform the wave equa
tions by applying the Laplace and Hankel transform with resp
to the nondimensionalized timeT and radial distanceR. In the
coating, the solution consists of upgoing and downgoing wa
due to the reflections at the interface and free surface, while in
half-space the solution contains only downgoing waves. The
known coefficients can be determined from the bound
conditions.

We show, for instance, the Laplace transformed stressS̄RR
1 in

the coating

S̄RR
1 5

2 Re

p E
0

`E
0

`F S a1
2

b1
22222w2D

3~Da
1e2ph1aZ1Ua

1e2ph1a~H2Z!!

12w2S h1b

z D ~Db
1e2ph1bZ

2Ub
1e2ph1b~H2Z!!GeiRpwp4dwdq, (3)

whereDa
1,Db

1,Ua
1,Ub

1 are the coefficients to be determined fro
the boundary conditions,Z and H are the nondimensionalize
depth and coating thickness, andp, z are the Laplace and Hanke
transform variables. The parametersh1a and h1b are h1a

5Az211 andh1b5Az21a1
2/b1

2.

Fig. 1 A coated elastic half-space subject to water drop
impact
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It can be shown that the coefficientsDa
1,Db

1,Ua
1,Ub

1 are ex-
pressed in terms of the infinite series, whose physical meanin
that the solution in the coating is composed of the reflected wa
and the number of reflections can increase infinitely. The typ
form Ī k of the infinite series in the stressS̄RR

1 can be expressed a

Ī k5ReE
0

`E
0

`

Rk~w,q!e2pgk~w,q!dwdq, (4)

whereRk(w,q) and gk(w,q) are independent of the variablep,
andgk is of the form

gk~w,q!5w21q22 iwR1(
n

bnAw21q21a1
2/cn

2, (5)

in which cn is a i or b i .
In order to apply the Cagniard-de Hoop method, we deform

integration path such thatgk(w,q)5T. The new integration path
w5w(T,q) intersects the imaginaryw-axis atw5 inm . We per-
form the integration along the new path inT and change the orde
of integration to find the inverse Laplace transform as

I k~T!5ReF E
0

qm

Rk~w,q!
]w

]T
dqGH~T2Tm~0!!, (6)

whereqm andTm satisfy the relation,Tm(qm)5T, andH(T) de-
notes a Heaviside step function. After summation ofI k(T) over
the rays, we can compute the stresses. Depending on the re
positions ofw5 inm and the branch points, we may have to intr
duce additional integration path to detour the branch cut, wh
leads to the head wave.

WhenZ50, we need to include the Rayleigh surface wave

I R~T!5DR

H~T1a22aR!

A~T1a2!22a2R2
, (7)

whereDR is the coefficient associated with the residue term a
a5a1 /cR , in whichcR is the Rayleigh wave speed in the coatin
The surface wave in Eq.~7! has singularity atR5(T1a2)/a.

Numerical Example
For a numerical example, we consider a case that the diam

and velocity of the water drop ared052 mm, V05453 m/s, and
the thickness of the coating is 43mm. The material properties o
the coating are: Young’s modulusE151.7131011 N/m2, a1

Fig. 2 Snapshot of the stress SRR when tÄ0.05 ms
MARCH 2001, Vol. 68 Õ 347
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55910 m/s, b153160 m/s, densityr156590 kg/m3; for sub-
strate,E256.7431010 N/m2, a254150 m/s,b252220 m/s,r2

55270 kg/m3. The substrate material is Zinc-Selenide. In Blo
ers’ paper, the only specified material property is Poisson’s r
n, and we use the same value here asn50.3 for both coating and
substrate, for which casea52.017.

In Fig. 2, we plot a snapshot of the nondimensional stressSRR
at 0.05ms. There is a sharp peak near the surface, which co
sponds to the Rayleigh wavefront atr 5224mm (R5(T1a2)/a
55.84). The boundary of the impact isr 5213mm (R52AT
55.56). In Fig. 3, we show the stressesSRR andSuu at the surface
as functions of the radial distance, in which the symbols ‘‘B
‘‘R,’’ and ‘‘L’’ mean the boundary of impact area, Rayleig
wavefront, and longitudinal wavefront, respectively. For compa
son, we also show the stressSRR when there is no coating and th
half-space is filled with the same material as the coating.

Concluding Remarks
It was shown that the pressure model in Eq.~1! produces an

annular strip of the high tensile stresses outside the contact
due to the Rayleigh wave, which has been observed experim
tally by Hand et al.@7#. The location and singular behavior of th
Rayleigh wavefront are determined from the pressure model
independent of the coating thickness. The region directly un
the contact area is in pure compression. Since the stresses c
have infinite magnitude in real impact situations, the singularity
the present study may be due to the abrupt change of pres
model at the impact boundary.
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Closed-Form Representation of Beam
Response to Moving Line Loads

Lu Sun
Department of Civil Engineering, The University of
Texas at Austin, ECJ Hall 6.10, Austin, TX 78712
e-mail: lusun@mail.utexas.edu

Fourier transform is used to solve the problem of steady-st
response of a beam on an elastic Winkler foundation subject
moving constant line load. Theorem of residue is employed
evaluate the convolution in terms of Green’s function. A clos
form solution is presented with respect to distinct Mach numbe
It is found that the response of the beam goes to unbounded a
load travels with the critical velocity. The maximal displaceme
response appears exactly under the moving load and travels a
same speed with the moving load in the case of Mach num
being less than unity.@DOI: 10.1115/1.1352064#

1 Introduction
The response of beams to moving loads has been studied

tensively over the past several decades~Fryba@1#!. The investiga-
tion of Bernoulli-Euler beams with moving loads includes t
work of Kenney@2#, Steele@3#, Huang @4#, Choros and Adams
@5#, Jezequel@6#, Elattary @7#, Lee @8#, Sun and Deng@9#, Sun
@10#, Sun and Greenberg@11#, and Benedetti@12#. It is found that
the moving load is often treated as a concentrated load. Since
concentrated loading condition is only an idealized model of
tire load, it is preferable to use a distributed line load model
characterize the wheel load more realistically.

Denotey(x,t) as the deflection of the beam iny-direction, in
which x represents the traveling direction of the pavement str
ture, andt represents time. The well-known governing equation
a Bernoulli-Euler beam on a Winkler foundation is~Sun @10#!

EI
]4y

]x4 1Ky1m
]2y

]t2 5P
H@r 0

22~x2vt !2#

2r 0
(1)

whereEI is the rigidity of the beam,E is Young’s modulus of
elasticity,I is the moment of inertia of the beam,K is the modulus
of subgrade reaction,m is the unit mass of the beam,r 0 is the
half-width of the line load,P is the magnitude of the applied load
andH(•) is the Heaviside step function.

The Green’s function of the beam is defined as the solution
Eq. ~1! given that the right-hand side external load is charac
ized byd(x2x0)d(t2t0). Taking two-dimensional Fourier trans
form and inverse on both sides of Eqs.~1! gives the Green’s
function
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MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
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G~x,t;x0 ,t0!5~2p!22E
2`

` E
2`

` exp$ i @j~x2x0!1v~ t2t0!#%

EIj41K2mv2

3djdv. (2)

The solution of ~1! given F(x,t) is given by y(x,t)
5*2`

` *2`
` F(x0 ,t0)G(x,t;x0 ,t0)dx0dt0 . Substituting Eqs.~1!

and ~2! into it gives

y~x,t !5
P̄

2p E
2`

` sinr 0j exp@ i j~x2vt !#

r 0j~j42m̄v2j21K̄ !
dj (3)

whereP̄5P/EI, K̄5K/EI andm̄5m/EI.

2 Closed-Form Representation of the Solution
Expression~3! can be further developed using complex fun

tion theory. To do so, one needs to identify the roots of the ch
acteristic equation of this typej41K̄2m̄v2j250. Define a new
variableu5j2 so we have a quadratic equation

u22m̄v2u1K̄50. (4)

Denote the critical velocity asvcritical5(4K̄/m̄2)1/4. Define dimen-
sionless velocity~i.e., the Mach number! M5v/vcritical .

~a! Subsonic case (M,1).
Two roots of Eq.~4! areu15@m̄v2(11 iAM 2421)#/2 andu2

5@m̄v2(12 iAM 2421)#/2. Further, we have four complex val
ued roots j1,25(m̄v2/2M2)1/2 exp@i(2jp1u)/2# and j3,4

5(m̄v2/2M2)1/2 exp@i(2jp2u)/2# in which tanu5(M2421) and
j 50 and 1. In the case ofx2vt>0, we select the closed contou
in the upper halfj-plane and, ifx2vt,0, in the lower half
j-plane. To shorten the length of the paper, only the casex2vt
>0 is considered in the following. Applying the theorem of res
due we obtain

y~x,t !5
p

2pEIr 0
H 2p i (

Im j.0
resH sinr 0j exp@ i j~x2vt !#

j~j42m̄v2j21K̄ !
J

1p i (
Im j50

resH sinr 0jexp@ i j~x2vt !#

j~j42m̄v2j21K̄ !
J J . (5)

After identifying the residues in Eq.~5!, it is straightforward to
see

y~x,t !5
iP

EIr 0
(

l 51,4

sinr 0j l exp@ i j l~x2vt !#

5j l
42m̄v2j l

21K̄
. (6)
Journal of Applied Mechanics
c-
ar-

-
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~b! Sonic case (M51).
In this case two duplicated roots of Eq.~5! are u1,25m̄v2/2.

Thus four real valued rootsj1,25j3,456(m̄v2/2)1/2. Since these
two poles are of the second order, this means that a singula
occurs when integrating~4! along the contour. Using the sam
procedure as in the case ofM,1, it is found that dynamic re-
sponse in this case becomes infinite and the singularity is of
orderO(«21). This result indicates the existence of a resonan
phenomenon asv5vcritical .

~c! Supersonic case (M.1).
Two roots of Eq.~4! are u15@m̄v2(11A12M 24)#/2 andu2

5@m̄v2(12A12M 24)#/2. Therefore, we have real valued roo
j1,256R1 and j3,456R2 where R15$m̄v2@11(1
2M 24)1/2#/2%1/2 and R25$m̄v2@12(12M 24)1/2#/2%1/2. Appar-
ently, since the distribution of the roots of the characteristic eq
tion depends heavily on the range of the Mach number, one m
expect that dynamic response of the beam to a moving load
also be distinct for different Mach number.

The poles of a system without damping can be thought of as
limit situation of poles of a system with damping while the dam
ing is approaching zero. The poles of a physical system with t
damping can be determined by seeking the roots of a new c
acteristic algebraic equation in which a negative infinitesim
imaginary term is added into the previous characteristic algeb
equation, i.e.,j42m̄v2j21K̄2 i«50 where« is a positive infini-
tesimal real number. Sinceu5j2. This new characteristic equa
tion becomes

u22m̄v2u1K̄2 i«50. (7)

The square root of the discriminant of Eq.~7! is D1/25m̄v2(1
2M 24)1/2 exp(ic/2), in which tanc5b(12M24)21 and b
54m̄22v24«. Sinceb→01 as«→01, we havec→01 andu1

51/2m̄v2@11(12M 24)1/2#exp(il1) and u251/2m̄v2@12(1
2M 24)1/2#exp(il2) as two roots, in which tanl15(1
2M24)1/2 sinc/2/11(12M 24)1/2 cosc/2 and tanl252(1
2M24)1/2 sinc/2/12(12M 24)1/2 cosc/2, respectively. Thus
j1,25R1 exp@i(l112jp)/2# and j3,45R2 exp@i(l212jp)/2#, ( j
50,1) where R1,25$m̄v2@16(12M 24)1/2#/2%1/2. Realize l1

5 limc→01 arctan(tanl1)501 and l25 limc→01 arctan(tanl2)
502, asc→01, the rootsj1 , j2 , j3 , andj4 , respectively, ap-

proach their own limits argj1,25$p1l1/2
l1/2

5$p101
01

and argj3,4

5$p1l2/2
l2/2

5$p102
02

.

Fig. 1 Poles of the beam on an elastic foundation with tiny amount of
damping
MARCH 2001, Vol. 68 Õ 349
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Figure 1 depicts the distribution of these poles in the comp
j-plane. Asv approaches critical velocityvcritical ~i.e., M→1!,
four poles ~black points! will move towards those poles~gray
points! of the casev5vcritical . Each pair of gray points on on
side of the imaginary axis will get more and more close to e
other asM→1, and becomes a single pole of the second ord
The dynamic response of the bean is given by

y~x,t !5
iP

2EIr 0
(

l 51,4

sinr 0j l exp@ i j l~x2vt !#

5j l
42m̄v2j l

21K̄
for x2vt>0.

(8)
In the case ofx2vt,0, we just need to replacel 51,4 in Eq.~6!
or ~8! by l 52,3.

3 Maximum Response
Define h5x2vt. The derivative ofy(x,t) with respect toh

suggests thath50 correspond to the extreme point. The maximu
response in the case ofM,1 can be obtained by substitutingx
2vt50 into Eq. ~7!. Define new parameters. The maximum r
sponse is ymax

moving(x5vt)5 iP/EIr 0$sin@r exp(iu/2)#/S11 iW1

1sin$r exp@i(2u1p)/2#%/S21 iW2% in which S155f4 cos 2u
23m̄v2f2 cosu1K̄, S255f4 cos 2u13m̄v2f2 cosu1K̄, W1

55f4 sin 2u23m̄v2f2 sinu, and W255f4 sin 2u13m̄v2f2 sinu,
f5(m̄v2/2M2)1/2 and r 5fr 0 . Using Maclaren series to expan
ymax

moving(x5vt) and taking only the real part

ymax
moving~x5vt !52

P

EIr 0
H A1S12B1W1

S1
21W1

2 1
A2S22B2W2

S2
21W2

2 J (9)

where

A15(
n50

`
~21!nr 2n11 sin@u~2n11!/2#

~2n11!!
,

B15(
n50

`
~21!nr 2n11 cos@u~2n11!/2#

~2n11!!
,

A25(
n50

`
r 2n11 cos@u~2n11!/2#

~2n11!!
and

B25(
n50

`
r 2n11 sin@u~2n11!/2#

~2n11!!
.

It should be noted that, althoughh50 can maked/dhy50
satisfied, it is a sufficient condition rather than a necessary co
tion. Actually, the response of the beam at the center of the m
ing load is the maximal response in the case ofM,1, while the
response of that location remains quiescent in the case ofM.1. It
also should be pointed out that similar method is applicable
moving load problem with damping considered in the govern
equation. Given the limit of the content, the result is not presen
herein.
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An Analytic Algorithm of Stresses
for Any Double Hole Problem
in Plane Elastostatics

Lu-qing Zhang
Engineering Geomechanics Laboratory, Institute of
Geology and Geophysics, Chinese Academy of Scienc
Beijing 100029, China

Ai-zhong Lu
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This paper gives an analytic algorithm to plane elastostatic pro
lem of an infinite medium containing two holes of arbitrary shap
and arrangement, using Schwarz’s alternating method, and fi
that the method has a very quick convergence speed even
solving a complex double hole problem.
@DOI: 10.1115/1.1352065#

1 Introduction
There are a large number of papers in plane elastostatics d

ing with regions containing two circular holes~@1–4#!. It seems
that only Hasebe et al.@5# provided one analysis method for th
problem of two complex holes in which one hole is of compl
profile and the other is a crack. However, the method is o
suitable for a symmetrical double hole problem.

The crucial ingredient in solving a double hole problem
means of Schwarz’s alternating method is the repeated solutio
a single hole problem, which can be well solved by Muskhelis
vili’s method ~@6#! via a conformal transformation of mapping th
given hole shape into a unit circle. The iterative solutions for
Schwarz’s alternating method needs many repeated transfo
tions between the physical and mapped planes. In order to con
the iterative solutions easily, two mapping functions of two hol
z15v1(z1) andz25v2(z2), and two corresponding inverse map
ping functions,z15v1

21(z1) andz25v2
21(z2), are introduced. In

the process of iterative solutions every iteration refers to
completion of solutions for two single hole problems.

2 Basic Formulas for Stress Analysis of Any Double
Hole Problem

In Fig. 1 z1 andz2 are the complex coordinates inx1o1y1 and
x2o2y2 local coordinate systems, respectively;c is the relative

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
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MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ma
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(3)
position vector of two holes inx1o1y1 coordinate system;sx
` ,

sy
` , andtxy

` are external loads uniformly distributed at infinity.
In the process of the first iteration, the presence of hole one

lead to a single hole problem, whose solution of stresses ca
written in terms of two complex stress functions,w11(z1) and
c11(z1), of the complex variablez1 . The stress boundary cond
tion for the presence of hole one is

Fig. 1 The calculating model for any double hole problem

Fig. 2 The problem for two circular holes
Journal of Applied Mechanics
ill
be

w11~s1!1
v1~s1!

v18~s1!
w118 ~s1!1c11~s1!5 f 1~s1! (1)

where a prime on a function denotes differentiation with respec
its argument, and a bar on a function indicates its conjugate;s1 is
the value ofz1 on the unit circle;w11(s1) and c11(s1) are the
values ofw11(z1) and c11(z1) on the unit circle, respectively
f 1(s1) is the principal vector of surface forces at the edge of h
one.

The stress functionsw11(z1) and c11(z1) can be used as the
loading functions for solving another single hole problem induc
by the presence of hole two. At this stage the boundary conditi
are satisfied at the edge of hole one, however, there exist re
dant surface forces at the edge of hole two. The redundant sur
forces are obtained directly by three coordinate transformati
between coordinatesz2 , z2 , z1 andz1 and a formula

f 12~s2!5w11~g1!1
v1~g1!

v18~g1!
w118 ~g1!1c11~g1! (2)

where s2 is the value of boundary pointt2 of hole two in z2
plane; f 12(s2) is the principal vector of the redundant surfa
forces with respect tos2 ; g1 is the coordinate ofs2 in z1 plane
via mapping transformationt25v2(s2), coordinate translation
T15t21c and inverse mapping transformationg15v1

21(T1).
The distribution of f 12(s2) at the edge of hole two can b

approximated by complex series(
k52L

L
Dks2

k , in which Dk is the

complex coefficient ofs2
k . In order to eliminate the redundan

surface forces, the reversed forces of(
k52L

L
Dks2

k , 2 (
k52L

L
Dks2

k ,

are imposed at the edge of hole two, yielding the other single h
problem in the first iteration. The solution for the presence of h
two can be expressed by two complex stress functionsw22(z2)
andc22(z2). The corresponding stress boundary condition is

w22~s2!1
v2~s2!

v28~s2!
w228 ~s2!1c22~s2!5 f 2~s2!2 (

k52L

L

Dks2
k

Table 1 The comparison of the maximum tensile stresses at the edge of the right hole from two methods
MARCH 2001, Vol. 68 Õ 351
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wherew22(s2) andc22(s2) are the values ofw22(z2) andc22(z2)
on the unit circle inz2 plane, respectively;f 2(s2) is the principal
vector of surface forces at the edge of hole two.

The superposition ofw11(z1), c11(z1) andw22(z2), c22(z2) is
the solution for the first iteration of the Schwarz’s alternati
method. At this stage, the boundary conditions only at the edg
hole two are satisfied. Of course, the second and later iterat
can be operated.

Taking w~z! and c~z! as the superposition of two stress fun
tions for all required iterative solutions, the stress components
be obtained readily.

3 Discussions on the Convergence Accuracy of Itera
tive Solutions

3.1 Comparison With the Exact Solution for the Problem
of Two Circular Holes. Now let us consider a linearly elasti
medium containing two equal circular holes, as plotted in Fig.
Three fundamental loading cases are discussed in some d
namely, the all-around, horizontal and vertical tensions applie
infinity. Owing to the symmetry of the problem, Table 1 on
Fig. 4 The redundant surface forces sr and tru for different iterations

Table 2 The maximum compressive stresses at the edges of two holes
Transactions of the ASME
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gives the maximum tensile stresses on the boundary of the
hole in which the iterative solutions are obtained by the Schwa
alternating method for ten iterations and the exact one given
Ling @3#.

3.2 Accuracy Analysis for the Problem of Two Complex
Holes. Let us consider the problem of an infinite and linea
elastic region, containing two complex holes, only under the
tion of compressive stresses at infinity~sx

`510 MPa andsy
`

520 MPa! ~see in Fig. 3!. If the solution is terminated at som
iteration, the boundary condition of zero surface forces along h
two will be satisfied exactly and along hole one approximate
Figure 4 plots the distribution of redundant surface forces al
hole one for 3, 5, 10, 15, and 20 iterative solutions, seen fr
which the redundant surface forces are gradually reduced to
roes as the further iteration.

4 The Maximum Stresses Around Two Holes for Dif-
ferent Loads and Arrangements

This paper still takes two holes in Fig. 3 as examples, o
changing the loads at infinity and arrangement of the two ho
Three loading cases and three arrangement cases are investi
and the maximum stresses at the edges of two holes are pres
in Table 2.
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The Rotating Tautochrone
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In a recent paper by Flores and Osler, the authors investiga
tautochrone curves in the xy-plane under an arbitrary poten
V(y). In this paper we imagine that the xy-plane of the tau
chrone curve is rotating about the y-axis with constant angu
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momentum. We find the differential equation of the tautochr
curves. While this differential equation is difficult to solve analy
cally, several exact solutions (in terms of elementary functio
are obtained in an indirect manner. Intuitive motivation for ta
tochrone motion is given.@DOI: 10.1115/1.1352066#

1 Introduction
Consider a bead of unit mass that moves on a frictionless w

described by the curvex5x(y) in the xy-plane. Assume that the
bead starts at timet50 at the point (x(Y),Y) with no initial
velocity and that the curvex5x(y) terminates on thex-axis at the
point (x0,0). The motion of the bead is governed by a poten
V(y) as it moves along the curvex5x(y). This curve is called a
tautochroneif the timeT required for the motion from the startin
point at (x(Y),Y) to the final point (x0,0) is independent of Y, ~the
starting height on the curve!. The problem of determining the
shape of the tautochrone curve under the gravitational pote
V(y)5gy was solved by Huygens and by Abel. The authors st
ied this problem under arbitrary potentialsV(y) in a recent paper
~@1#! using the fractional calculus. In this paper we assume that
xy-plane containing our curvex5x(y) is rotating with constant
angular momentumL about a shaft centered on they-axis.

In our previous study~@1#! ~angular velocityv50! we deter-
mined that the timeT for the bead to descend fromy5Y to y
50 is given by

E
0

Y ds

AV~Y!2V~y!
5A2T. (1)

Here s measures the distance along the curvex5x(y) starting
from (x0,0) to the point (x(y),y). Using the fractional calculus
we determined that when the curve is a tautochrone, then
potential and the arc length are related by

V~y!5
p2

8T2 s2. (2)

We also determined that the differential equation satisfied by
tautochrone curve is

11x8~y!25
2T2

p2

V8~y!2

V~y!
. (3)

For ~3! to be valid, we require thatV(0)50. ~This can always be
achieved by simply adding a constant to the potential.! The solu-
tion for our tautochrone curve in terms of the given potential

x~y!5E
0

yA2T2

p2

V8~u!2

V~u!
21du1x0 . (4)

We will use the above results when we solve our rotating tau
chrone problem.

2 The Rotating Versus Nonrotating Tautochrones
The sum of the kinetic and potential energies for the rotat

parts and for our bead of unit mass on the wirex5x(y) in the
rotatingxy-plane~angular velocityv(y)! is

1

2
Iv~Y!21

1

2
v~Y!2x~Y!21V~Y!

5
1

2 S ds

dt D
2

1
1

2
Iv~y!21

1

2
v~y!2x~y!21V~y!. (5)

The following are important features of~5!:
A The wire and rotating ‘‘parts’’ are rigid and rotating freel

~without torque! about they-axis. ~See Fig. 1.!
B On the left of~5! we see the energy at the moment the be

is released at the point (X,Y) and on the right we see the energ
when the bead is at the arbitrary point (x,y) on the wire.

r.
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C The wire is given an initial angular velocity and the bead
started with zero velocity relative to the rotating frame. In partic
lar, at timet50 the system is rotating with angular velocityv(Y)
about they-axis.

D As a consequence ofC, at time t50 the bead has no com
ponent of velocity tangent to the curve but it does have a com
nent of velocity perpendicular to thexy-plane given by
v(Y)x(Y).

E During the motion the angular velocity of the bead~and the
system of parts! given by v(y) will vary. It will change so that
angular momentum is always conserved.~See relation~12!!.

F The moment of inertia of the wire, rotating shaft and su
ports isI and its kinetic energy is the term 1/2Iv(y)2.

G The termds/dt is the magnitude of the velocity compone
tangent to the curve. The arc lengths is measured from the termi
nal point (x0,0) to the moving point (x(y),y).

If we call V* (y) the terms

V* ~y!5V~y!1
1

2
Iv~y!21

1

2
v~y!2x~y!2, (6)

we can abbreviate the writing of~5! as simply

V* ~Y!5V* ~y!1
1

2 S ds

dt D
2

. (7)

Solving ~7! for ds/dt we get

ds

dt
52A2A$V* ~Y!%2$V* ~y!%. (8)

The minus sign in~8! is due to the assumption that the arc leng
s is decreasing. This requires that the initial angular speedv(Y)
be small enough that when the bead is released with zero rel
velocity, the bead falls downward instead of flying outward. F
example, in the case of a gravity-potential, it assumes that

dy

dx
.

x~Y!v~Y!2

g
.

We can now write

A2dt52
ds

AV* ~Y!2V* ~y!
. (9)

Integrating from the beginning of the motion to the end we ge

A2T5E
0

Y ds

AV* ~Y!2V* ~y!
. (10)

Notice that Eqs.~1! and~10! have the same form, thus, they ha
the same solution. This implies that for a given curvex5x(y), the
time T for the rotating case under the potentialV(y) is the same as
the time for the nonrotating case under the potentialV* (y). This
last statement is important for our work. If we know that the cur

Fig. 1 The rotating frictionless wire with supports
354 Õ Vol. 68, MARCH 2001
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x5x(y) is a nonrotating tautochrone under the potentialV* (y),
then we know that the same curve is a tautochrone rotating w
angular velocityv(y) under the potential

V~y!5V* ~y!2
1

2
~ I 1x~y!2!v~y!2. (11)

We can eliminatev(y) from ~11! by using the conservation o
angular momentum expressed as

L5~ I 1x~Y!2!v~Y!5~ I 1x~y!2!v~y!. (12)

We require that this angular velocity vary with the starting heig
Y so as to keep the angular momentumL constant.

Solving ~12! for v(y) and substituting into~11! we get

V~y!5V* ~y!2
1

2

L2

~ I 1x~y!2!
. (13)

We recall from our previous paper that all the potentials we
are required to satisfyV(0)5V* (0)50 so that relations~1! to ~4!
are all valid. Sincex(0)5x0 we must add the constant term
L2/2(I 1x0

2) to the right side of~13! so that all potentials are zer
wheny50. We get

V~y!5V* ~y!2
1

2

L2

~ I 1x~y!2!
1

L2

2~ I 1x0
2!

. (14)

We will use ~14! to find several rotating tautochrones in the ne
section.

3 Finding Exact Rotating Tautochrones
In our previous paper we found exact nonrotating tautochro

indirectly. We started with a curvex5x(y) for which we could
calculate the arc lengths5s(y) exactly. We then used relation~2!
to find the potential that would make this curve a tautochro
Nine such curves were selected for their ease of calculation.
nine can be easily modified using~14! to give us rotating tauto-
chrones. The results are shown in Table 1.

While all the resulting potentials are bizarre, we believe it
important to collect exact solutions of mechanics problems wh
ever they are possible. When exact analytic solutions canno
found, perturbation or numerical solutions are usually possi
The latter tell us much less than the exact solutions.

4 The Differential Equation for the Rotating Tauto-
chrone

We will now find the differential equation satisfied by the r
tating tautochrone. Relation~3! is the differential equation for the
nonrotating tautochrone. SubstitutingV* (y) from ~14! for V(y) in
~3! we get

11x8~y!25
2T2

p2

H V8~y!2
L2x~y!x8~y!

~ I 1x~y!2!2 J 2

H V~y!1
L2

2~ I 1x~y!2!
2

L2

2~ I 1x0
2!J

. (15)

This is our differential equation for the rotating tautochrone. It
much more complex and difficult to solve than~3!. We can re-
write ~15! in the form

p2$2~ I 1x0
2!~ I 1x~y!2!V~y!2L2x~y!2%~ I 1x~y!2!3~11x8~y!2!

54~ I 1x0
2!T2$~ I 1x~y!2V8~y!2L2x~y!x8~y!%2. (16)

We can use~15! or ~16! to check our solutions in Table 1, bu
solving exactly for a given potential appears to be difficult.
course, numerical solutions are possible.

5 The Case WhereI is Large
We now discuss the approximation where the moment of ine

of the bead,x2, is much smaller thanI, the moment of inertia of
Transactions of the ASME



Table 1 Examples of Potentials and Corresponding Rotating Tautochrone Curves

Tautochrone Curve Arc Lengths PotentialV(y)

1 x5R sinu1x0,
y5R2R cosu

circle: center (x0 ,R),
radiusR

s5Ru5Rcos21SR2y

R D p2R2

8T2 Hcos21SR2y

R DJ2

1
L2

2~I1x0
2!

2
L2

2~I1~A2Ry2y21x0!2!

2 x5R2R cosu1x0
y5R sinu

circle: center (R1x0,0),
radiusR

s5Ru5R sin21(y/R)) p2R2

8T2 $sin21~y/R!%21
L2

2~I1x0
2!

2L2/~2~I1~R2AR22y21x0!2!!

3 x5R sin(a1u)2Rsina
1x0

y5R cosa2Rcos(a1u),
R anda fixed
circle: radiusR

center
(x02R sina,Rcosa)

s5Ru

u5cos21SRcos~a!2y

R D2a

p2R2

8T2 Hcos21Sa2y

R D2aJ2

1
L2

2~I1x0
2!

2
L2

2~I1~AR22~R cosa2y!22Rsina1x0!
2!

wherea5R cos(a)
4 x5R(u1sinu)1x0

y5R(12cosu)
inverted cycloid:
base liney52R

s54R sin(u/2)
s52A2Ry

p2R

T2 y1
L2

2~I1x0
2!

2
L2

2SI1HRcos21SR2y

R D1A2Ry2y21x0J 2D
5 x5Ru2R sinu1x0

y5R2R cosu
cycloid

s54R(12cos(u/2))

s54RS12A12
y

2RD
p2R

T2 y1
L2

2~ I 1x0
2!

2
L2

2S I 1H R cos21SR2y

R D2A2Ry2y21x0J 2D
6 x5ay1x0 s5A11a2y p2~11a2!

8T2 y22
L2

2~I1~ay1x0!
2!

1
L2

2~I1x0
2!

7 x52Aay3/31x0
s5

2

3a
@~11ay!3/221#

p2

18a2T2 @~11ay!3/221#2

2
L2

2~ I 1~2Aay3/31x0!2!
1

L2

2~ I 1x0
2!

8 x5ay2/21x0 s5(ayA11a2y21

ln(ay1A11a2y2))/2a
p2

32a2T2 ~ayA11a2y21 ln~ay1A11a2y2!!2

2
L2

2~ I 1~ay2/21x0!2!
1

L2

2~ I 1x0
2!

9 y5a cosh((x2x0)/a)2a
1x0

s5A(y1a)22a2 p2

8T2 @~y1a!22a2#1
L2

2~I1x0
2!

2L2/S2SI1Ha cosh21Sy1a

a D1x0J2DD
a

the wire, shaft and support. We will also assume thatx050, so
that the wire is attached directly to the shaft at the bottom. St
ing with ~14! we can write

V* ~y!5V~y!1
L2

2I ~11x~y!2/I !
2

L2

2I
.

Expanding the second term on the right in powers ofx(y)2/I we
obtain to a first-order approximation
Journal of Applied Mechanics
rt- V* ~y!5V~y!2
1

2

L2

I 2 x~y!2.

The conservation of angular momentum~12!, to a first-order ap-
proximation becomes simplyL5Iv wherev is now a constant.
Thus the above expression becomes

V* ~y!5V~y!2
1

2
v2x~y!2.
MARCH 2001, Vol. 68 Õ 355
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The differential Eq.~15! is now much simpler,

11x8~y!25
2T2

p2

$V8~y!2v2x~y!x8~y!%2

H V~y!2
1

2
v2x~y!2J .

As an example consider the potential of a simple harmo
oscillatorV(y)5ky2/2 and try a straight line solutionx(y)5ay,
the differential equation becomes~after simplifying!

11a25
4T2

p2 $k2a2v2%.

Solving for a we geta5A4T2k2p2/4T2v21p2. Thus, under a
harmonic oscillator potential the tautochrone curve is a stra
line with slopea.

In general the potential for the rotating tautochrone, to a fi
order approximation, is

V~y!5V* ~y!1
1

2
v2x~y!21C.

The first term is the potential of a nonrotating tautochroneV* (y),
the second term is the potential of a simple harmonic oscilla
and C is a constant. The second term could be produced by
ideal spring stretched along thex-axis with one end attached to th
bead and at the other to the shaft. As the bead moves dow
does the spring. The tension in the spring serves to exactly ca
the centrifugal forcev2x. Thus, the motion of the bead along th
wire, as seen by an observer rotating with the system, will
identical to the motion of the bead of a nonrotating tautochrone
potentialV* (y).

6 Physical Intuition Behind Tautochrones
There is a simple, beautiful explanation for all tautochrone m

tion. All tautochrones act like simple linear springs. Suppose a
massm attached to a spring is displaced a distanceA from equi-
librium. The time required for the mass to return to the equil
rium position is

T5
p

2
Am

k
(17)

where k is the spring constant. This time is independent of
displacementA and thus we have tautochrone motion in eve
simple spring. The restoring force from the spring is proportio
to the distances that the spring is stretched:F5ks. Solving ~17!
for k we can write this force as

F5
mp2

4T2 s. (18)

This formula is also valid for any nonrotating tautochrone~@2#!.
Let us now examine the forces on the bead~of unit mass! on

our rotating tautochrone curve. Starting with relation~2! and re-
placing the potential byV* (y) we get

Fig. 2 Geometric meaning of differentials
356 Õ Vol. 68, MARCH 2001
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V* ~y!5
p2

8T2 s2.

Next use~14! to replaceV* (y) to obtain

V~y!1
1

2

L2

~ I 1x~y!2!
2

L2

2~ I 1x0
2!

5
p2

8T2 s2.

Differentiate with respect toy and get

V8~y!2
L2x~y!x8~y!

~ I 1x~y!2!2 5
p2

4T2 s
ds

dy
.

From ~12! we see thatv(y)25L2/(I 1x(y)2)2 and thus the above
expression can be written as

V8~y!2x~y!v~y!2
dx

dy
5

p2

4T2 s
ds

dy
.

Finally we multiply bydy/ds to get

V8~y!
dy

ds
2x~y!v~y!2

dx

ds
5

p2

4T2 s.

From Fig. 2 we see that the derivatives in the above expres
can be replaced bydx/ds5cosu anddy/ds5sinu.

V8~y!sinu2x~y!v~y!2 cosu5
p2

4T2 s. (19)

Using Fig. 3 we see that the termV8(y)sinu is the component
of the force generated by the potential in the direction tangen
the tautochrone curve. We also see that the termx(y)v(y)2 cosu
is the component of centripetal acceleration along the tautoch
curve.

Thus we see that~19! tells us that when the forces acting on o
bead are resolved in the direction tangent to the tautochr
curve, then the sum of these forces is proportional to the dista
s from the final point on the tautochrone. This is similar to~18!
that describes the simple spring.~Notice that withm51 the con-
stants in~18! and~19! are identical.! The sum of the forces tangen
to a tautochrone curve on a moving bead is proportional to t
distance measured from the final point to the bead.
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Fig. 3 Why all tautochrones act like simple springs
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Smooth Asymmetric Two-Dimensional
Indentation of a Finite Elastic
Beam
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Standard methods of beam indentation analysis use a beam th
solution to obtain the load-displacement relationship and a He
solution to calculate local stresses. However, when the con
length exceeds the thickness of the beam point contact ca
longer be assumed and Hertzian relations are no longer va
This paper presents an improved superposition solution techn
that uses a true elasticity solution to obtain the load-displacem
relationship in non-Hertzian indentation problems.
@DOI: 10.1115/1.1352068#

Introduction
In this paper, we present an improved solution to the tw

dimensional problem of a finite beam of lengthL and thicknessh
that is loadedasymmetricallyon its upper surface by a frictionles
cylindrical indenter~see Fig. 1!. Standard methods of indentatio
analysis use a beam theory solution to obtain an overall lo
displacement relationship and then a Hertzian contact solutio
calculate local stresses under the indenter. However, prev
modeling efforts have shown that the stress distribution in
region of contact will differ significantly from a Hertzian on
when the contact length exceeds the thickness of the beam
such cases, point contact can no longer be assumed and He
relations are not valid.

Problems of this type were solved previously by Keer a
Miller @1# and Peck and Schonberg@2# using a GLOBAL/LOCAL
approach that superposed beam theory and elasticity express
The technique developed was also applied to cantilever beam
dentation by Keer and Schonberg@3,4# and subsequently modifie
to include beam rotation effects by Zhou and Schonberg@5#. A
review of the superposition procedure used by Keer, Schonb
et al. reveals that it has a problematic aspect: it uses an app
mate solution~instead of an elasticity solution! to establish the
load-displacement relationship at the contact site.

The improved superposition technique presented in this pa
addresses this issue by using a static finite layer solution that
true elasticity solution. Also, in a manner similar to that used
Zhou and Schonberg@5# to model cantilever beam indentation, th
rotation of the beam under the indenter is included in the mi
boundary condition at the contact site. As a result, the final s
tion takes into consideration all of the prescribed boundary
end conditions and describes more accurately the local sur

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received and accepted by the ASME Applied Mechan
Division, May 31, 2000; final revision, Oct. 10, 2000. Associate Editor: M.-J. P
dera.
Copyright © 2Journal of Applied Mechanics
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deformation due to contact pressure and the global flexural de
mation of the beam. The validity of the solutions presented
assessed by comparing the results obtained to the prediction
modified beam theory solutions.

Generalized Elasticity Solution for a Finite Layer
In this section we present the solution for a finite elastic layer

thickness that is subjected to an arbitrary upper surface pres
distribution. This solution is achieved by the superposition of
elasticity solution for an infinite layer loaded on its upper surfa
with an elasticity solution for a finite layer subjected to asymm
ric bending.

A suitable elasticity solution that represents normal loading
the upper surface of an infinite elastic layer in plane strain with
loading on its lower surface is given by Keer and Miller@1#. To
complete the finite elastic layer solution, we introduce the follo
ing elasticity solution for the asymmetric bending of a finite lay
~thicknessh and lengthL! having end momentsM0 andM1 :

syy50, (1)

sxy5
V~x!

2I
y~h2y!, (2)

sxx5
M ~x!

I S y2
h

2D (3)

ux5
1

D H b02a1y1
22n

12~12n!

M12M0

L
@2~h2y!323h~h2y!2#

1FM0x1
M12M0

2L
~L01x!2G S y2

h

2D (4)

uy5
1

D Fa01a1x2
1

2
M0x22

M12M0

6L
~L01x!3G

2
n

2~12n!D
M ~x!~y22hy! (5)

ū~x![
1

h E0

h ]uy

]x
dy5

1

D Fa12M0x2
M12M0

2L
~L01x!2G

1
nh2

12~12n!D

M12M0

L
(6)

M ~x!5M01
M12M0

L
~L01x!, (7)

V~x!5
M12M0

L
(8)

whereL0 , L, andL1 are as shown in Fig. 1,D5mh3/6(12n),
I 5h3/12, M0 , M1 are end bending moments atx52L0 and at
x5L1 , respectively, anda0 , b0 , a1 are ~as yet! unknown con-
stants. This solution is a superposition of the Airy stress funct
solutions for asymmetric bending and for pure shear.

Superposing Eqs.~1!–~8! with the corresponding expression
for stresses, displacements, etc., in Keer and Miller@1# yields the
generalized elasticity solution for a finite length isotropic elas
layer subjected to an arbitrary upper surface loading. In the n
section, we apply appropriate end conditions to this solution
obtain the desired beam indentation problem solutions.

Asymmetric Beam Indentation Model
The mixed boundary value problems to be solved in this sec

are those of a simply supported and a fixed-fixed elastic beam
are indented by a cylindrical punch on their upper surface~see
again Fig. 1!. The solutions of these problems are achieved
application of the mixed boundary conditions at the contact s

ics
in-
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and the appropriate end support conditions in the generalized
ticity solution presented in the preceding section. As in Zhou a
Schonberg@5#, the boundary condition for both types of beams
contact sites is written as follows:

uy~x,0!5D1u0x2
x2

2R
uxu,c (9)

where D and u0 are the beam upper surface displacement
rotation under the indenter. The two types of end support co
tions that need to be satisfied are~1! simple supports~zero mo-
ment and displacement at the beam ends!, and~2! fixed ends~zero
slope and displacement at the fixed ends!. By applying these end
support conditions to appropriate expressions in the genera
elasticity solution, we obtain a system of four equations for
four unknownsa0 , a1 , M0 , and M1 for each beam type. Onc
solved, the expressions for these four quantities are used in ap
ing the mixed boundary condition at contact site given by Eq.~9!.
Following the approach used by Keer, Schonberg, et al. we ob
two coupled Fredholm integral equations of the second ki
These equations have the following forms:

h3

6
c~x!1E

0

c

c~ t !K1~x,t !dt1E
0

c

f~ t !K2~x,t !dt1 f ~x!52
Dx

R

(10)

h3

6
f~x!1E

0

c

f~ t !K3~x,t !dt1E
0

c

c~ t !K4~x,t !dt1g~x!50

(11)

where the kernelsK1 throughK4 and the functionsf (x), g(x) are
given as follows:

Simply Supported Ends.

K1~x,t !52E
0

`Fh3

6 S b1shbchb

b22sh2b
11D jxJ0~jx!

1
x

2

cos~jL0!1cos~jL1!

j2 GJ0~jt !dj1
p~L12L0!2

4L
x

(12)

K2~x,t !5
p~L12L0!

4L
xt (13)

K3~x,t !5
h3

6 S 1

t D1
h3

6 E
0

`S b1shbchb

b22sh2b
11D

3@J0~jx!2jxJ1~jx!21#J1~jt !dj2
3px2

8L
t

(14)

K4~x,t !52
3px2

8L
~L02L1! (15)

f ~x!50, (16)

Fig. 1 Indentation of a finite layer
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g~x!50 (17)

Fixed-Fixed Ends.
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6L E0

` x
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(19)
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6 S 1
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b22sh2b
11D
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f ~x!5
x

2L
~L12L0!~M12M0!, (22)

g~x!52
3

4

x2

L
~M12M0! (23)

The functionsc(t) and f(t) are related to the symmetric an
anti-symmetric components of the surface loading as follows:

P52pE
0

c

c~ t !dt, (24)

M52pE
0

c

tf~ t !dt. (25)

Once Eqs.~10!,~11! are solved to obtainc(x) and f(x), all
necessary quantities can also be readily obtained. The actua
lution of Eqs. ~10!,~11! is performed numerically in nondimen
sional form. This transformation is obtained using the followi
nondimensional parameters:L0 /h, L/h, t/c, x/c, y/h,
Rh3c(x)/Dc, andRh3f(x)/Dc, andRD/h2. To assess the va
lidity of the elasticity solutions, their predictions for beam di
placement are compared with the predictions of beam theory
lutions that use as input the contact pressure generated by
elasticity solutions. These solutions are given as follows:

Simply Supported Ends.

DSS5
L0L1

3DL
@L0L1P1~L12L0!M #

1
1

D E
0

cS pL0L1

4L
2

t

9D t2c~ t !dt

1
p~L12L0!

32DL E
0

c

t3f~ t !dt (26)

Fixed-Fixed Ends.
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DFF5DSS2
L0

2L1
2

3DL3 ~L22L0L1!P2
L0L1

6DL3 ~L12L0!

3@L21~L12L0!21L0L1#M

2
pL0L1

12DL3 @L212~L12L0!212L0L1#E
0

c

t2c~ t !dt

1
pL0L1~L12L0!

16DL3 E
0

c

t3f~ t !dt (27)

whereDSS is given by Eq.~26!, andP, M are again given by Eqs
~24!,~25!, respectively.

Results and Discussion
Solutions to the two types of indentation problems were

tained forc/h50.25, 0.5, 1.0 and 2.0,L/h510.0 and 20.0, and
for each L/h value, 2L0 /L51.0, 1.5, and 1.7~where 2L0 /L
51.0 corresponds to the case of central indentation studied
Keer and Miller @1#!. We note that for 2L0 /L51.7 and L/h
510, c/h52.0 would imply that the contact length would exten
past the support; hence,c/h52.0 was not considered in this cas
For the fixed-fixed beam indentation problem, all calculations
performed with a Poisson’s ratio of 0.3. The results of this pa
metric study were compared with values obtained using the m
els developed by Keer and Miller@1# and Peck and Schonberg@2#
that did not include upper-surface rotation effects.

For small values ofc/h ~i.e., c/h<0.5!, the predictions of peak
contact stress values by the various solutions agreed quite
However, forc/h>1 the peak stress predictions were found
occasionally differ significantly. This occurred because asc/h in-
creases, the effects of beam upper surface rotation effects be
more pronounced. While the current model incorporates those
fects, the previous models do not. Therefore, the various mo
will match more closely for smaller contact areas and inden
locations that result in minimal rotation effects. For larger cont
areas and for indenter locations near beam ends, peak co
stress values predicted by the various models differed by as m
as 10–15 percent for both types of beam supports. Finally,
Journal of Applied Mechanics
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note that while there were differences in peak contact stress
ues, the overall shapes of the contract stress distributions w
very similar to those presented by Keer and Miller@1# and by
Peck and Schonberg@2#.

A comparison between the predictions of beam displacem
under the indenter generated by the improved solutions develo
herein and the predictions of the beam theory solutions sho
that the results of the two solutions agreed very well, and that
agreement improved asL/h increased andc/h decreased. This
can be explained by the following considerations. First, asL/h
increases, the effects of shear deformation on beam respons
come negligible. Second, asc/h decreases, the local effects o
beam upper surface rotation become negligible. In both ca
while the elasticity solution incorporates those effects, the be
theory solutions do not. Therefore, the two solutions will mat
more closely for indenter locations that result in minimal she
deformations and for smallerc/h values.

Differences between the displacement predictions of the e
ticity solution developed herein and the predictions obtained us
the GLOBAL/LOCAL models developed previously by Keer an
Miller @1# and Peck and Schonberg@2# showed fairly minimal
differences for smallc/h values and for most 2L0 /L values~typi-
cally less than five percent!. This was expected because~1! the
governing equations of motion for the solution developed her
and the solutions developed by Keer and Miller@1# and Peck and
Schonberg@2# are identical for the case of simply supported en
and~2! beam upper surface rotation effects on beam response
minimal when for smallc/h values. Furthermore, in the case
fixed-fixed beams, as 2L0 /L→1 andL/h increases, the condition
of zero rotation angle at the fixed end supports has less o
effect on the contact zone. Therefore, the effects of second o
shearing effects on the average beam rotationū for the new model
become negligible. While the current model incorporates th
effects, the previous models do not. Therefore, the newly de
oped and previous models will match more closely for sma
contact area and indenter locations that result in minimal rota
and shearing effects.

Figure 2 shows the nondimensional load-displacement cu
for L/h510 and 20 fixed-fixed beams where 2L0 /L51.7. The
Fig. 2 Nondimensional displacement comparisons, new model versus old
models „Keer and Miller †1‡; Peck and Schonberg †2‡…, fixed-fixed beams,
2L 0 ÕLÄ1.7, L ÕhÄ10.0 and 20.0
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larger differences in some of the indentation scenarios show
this figure can probably be attributed to limitations in the nume
cal integrations of the infinite integrals that appeared in the w
performed by Peck and Schonberg@2#. According to Peck and
Schonberg, it was not possible to integrate the kernels in
fixed-fixed beam equations to the same accuracy as those in
simply supported cases. This was due to the fact that the ker
for simply supported beam equations converged at a rate of 1j2,
while those for the fixed-fixed beams converged at the m
slower rate of 1/j. In our solution, we have overcome this nume
cal integration limitation by using exact integration results
expressions involving Bessel functions. This allowed the kern
in the fixed-fixed beam equations to converge at the much fa
rate of 1/shj.

Interestingly enough, the value ofR ~the radius of the indenter!
did not appear to have any bearing on the solution of the gov
ing equations for this problem. That is, the nondimensional st
and displacement values calculated using the model develo
herein would appear to be valid for all values ofR! Mathemati-
cally, this occurs because of the nondimensional scheme: in
scheme, all traces ofR are removed by the nondimensionalizatio
process. However,R doeshave an effect when the nondimen
sional values of stress and displacement are transformed into
values. While all of the nondimensional predictions of the mo
may be mathematically possible, they maynot be physically at-
tainable for some values ofR. For example, the case ofc/h52 is
clearly more readily attainable for very large values ofR ~as com-
pared toh!, and significantly less so~if not impossible! for small
values ofR ~as compared toh!.
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Summary and Conclusions
The static and dynamic indentation of beams and plates con

ues to be an intriguing problem, especially for scenarios in wh
large area contact can be expected to occur. The solution sch
presented herein is a refinement of the approach originally de
oped for the relatively simple problem of central beam inden
tion. We found that the results provided by this refinement are
most cases, not significantly different from those that can be
tained using existing GLOBAL/LOCAL analysis technique
However, the changes introduced into the modeling proc
should allow this refined solution technique to more accurat
predict internal stress fields due to upper surface indentati
This capability is critical in the case of composite beams or pla
where internal damage can appear prior to any evidence of d
age on the external beam or plate surface.
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